
EVR Usage Guide

Mi
hael Davidsaver <mdavidsaver�gmail.
om>

August. 2020, Rev. 9

Contents

1 What is Available? 2

1.1 Prerequisites . 3

1.2 Sour
e . 3

1.3 Supported Hardware . 4

2 System Overview 4

2.1 Event Link Data . 5

2.2 Global Time Distribution . 7

3 Re
eiver Fun
tions 8

3.1 Pulse Generators . 8

3.2 Event Mapping Ram . 9

3.3 Pres
alers (Clo
k Divider) . 9

3.4 Outputs (TTL) . 9

3.5 Outputs (CML and GTX) . 9

3.6 Inputs . 10

3.7 Global Timestamp Re
eption . 10

3.8 Data Bu�er Tx/Rx . 10

4 IOC Deployment 10

4.1 Devi
e names . 11

4.2 VME64x Devi
e Con�guration 11

4.3 PCI Devi
e Con�guration . 11

4.4 PCI Setup in Linux . 12

4.5 Example Databases . 13

1

5 Testing Pro
edures 14

5.1 EVG and EVR Che
kout . 15

5.2 Timestamp Test . 17

6 Firmware Update 18

6.1 300-series Devi
es . 18

6.2 VME EVRs and EVGs . 20

6.3
PCI-EVRTG-300 . 20

6.4 PMC-EVR-230 . 20

7 NTPD Time Sour
e 24

8 Bu�ered Timestamp Capture 25

9 Implementation Details 25

9.1 Event
ode FIFO Bu�er . 26

9.2 Data Bu�er re
eption . 26

9.3 Timestamp validation . 27

10 EVR Devi
e Support Referen
e 27

10.1 Per-devi
e Database Files . 28

10.2 Spe
ial Database Files . 29

1 What is Available?

More infomation on the Mi
ro Resear
h hardware
an be found on their website

http://www.mrf.fi/.

The software dis
ussed below
an be found on the EPICS appli
ation proje
t

on Sour
eForge http://sour
eforge.net/proje
ts/epi
s/.

The latest developments
an be found in the 'mr�o
2' Git VCS repository.

https://github.
om/epi
s-modules/mrfio
2

2

http://www.mrf.fi/
http://sourceforge.net/projects/epics/
https://github.com/epics-modules/mrfioc2

1.1 Prerequisites

Build system required modules

EPICS Base >= 3.14.10 EPICS Core

http://www.aps.anl.gov/epi
s/base/R3-14/index.php

MSI Ma
ro expansion tool (Base <3.15.0 only)

http://www.aps.anl.gov/epi
s/extensions/msi/index.php

devLib2 >= 2.9 PCI/VME64x Hardware a

ess library

https://github.
om/epi
s-modules/devlib2/

Build system optional modules. Not required, but highly re
ommended.

autosave Automati
 save and restore on boot

http://www.aps.anl.gov/b
da/synApps/autosave/autosave.html

io
stats Runtime IOC statisti
s (CPU load, . . .)

http://www.sla
.stanford.edu/
omp/unix/pa
kage/epi
s/site/devIo
Stats/

http://sour
eforge.net/proje
ts/epi
s/files/devIo
Stats/

Target operating system requirements

RTEMS >= 4.9.x

vxWorks >=6.7

Linux >= 3.2.1 (earlier versions may work)

1.2 Sour
e

VCS Che
kout

$ g i t
 lone https : // github .
om/ epi
s−modules/mrf io
2 . g i t

Edit '
on�gure/CONFIG_SITE' and '
on�gure/RELEASE' then run "make".

The following is a brief tour of the important lo
ations in the sour
e tree relating

to the EVR.

3

http://www.aps.anl.gov/epics/base/R3-14/index.php
http://www.aps.anl.gov/epics/extensions/msi/index.php
https://github.com/epics-modules/devlib2/
http://www.aps.anl.gov/bcda/synApps/autosave/autosave.html
http://www.slac.stanford.edu/comp/unix/package/epics/site/devIocStats/
http://sourceforge.net/projects/epics/files/devIocStats/

1.3 Supported Hardware

The following devi
es are supported.

Name # FP

a

FP UNIV

b

FP Inputs

RTM

d

VME-EVR-230

e

4 4 2 Yes

VME-EVR-230RF 7

f

2 2 Yes

PMC-EVR-230 3 0 1 No

CPCI-EVR-230 0 4 2 Yes

g

PCI-EVRTG-300 2

h

2 1

i

No

PCI-EVR-300 0 12 2 0

PCIe-EVR-300DC 0 0 0 16

mTCA-EVR-300

j

4 4/0 2 0/16

a

Front panel outputs (TTL)

b

Front panel universal output so
kets

Front panel inputs

d

Supports Rear Transition Module

e

This devi
e has not been tested

f

Outputs 4,5,6 are CML

g

Supports PCI side-by-side module

h

GTX outputs

i

Spe
ial GTX interlo
k

j

Two hardware �avors exist, one with 2x UNIV I/O so
kets, the other with an IFB-300

onne
tor,

2 System Overview

The purpose of this do
ument is to a
t as a guide and referen
e when using the

'mr�o
2' EPICS support module for the Mi
ro Resear
h Finland (MRF) timing

system

1

. It des
ribes software for using the Event Generator (EVG) and Event

Re
eiver (EVR).

The MRF Event Timing System
an be deployed in two
on�gurations (Fig. 1).

The �rst is a unidire
tional broad
ast from a single sour
e (EVG) to multiple

destinations (EVRs). The Repeater devi
es simply retransmit its single input

to all outputs (one to many). In the se
ond
on�guration a return path from

many EVRs ba
k up to single
entral (master) EVR is added.

An EVR will a
t in one of two roles: either Leaf or Master. The Master EVR is

ne
essary be
ause, while the generator (EVG) is
apable of re
eiving an event

stream, it does not impliment the features of the re
eiver (EVR).

What is transmitted over the event link is a
ombination of 8-bit event
odes

and data. Data
an take the form of a single 8-bit byte whi
h is simply
opied

from sender to re
eiver (the Distributed Bus or DBus), and optionally a variable

length byte array (Data Bu�er).

1

List of supported hardware given in se
tion 1.3.

4

These two types of data
an be
ombined in two ways (Fig. 2) depending on

whether or not the Data Bu�er feature is used. In
on�guration A every 16-

bit frame is split between an 8-bit event and the 8-bit Distributed Bus. In

on�guration B every frame
arries an 8-bit event with the Distributed Bus or

a Data Bu�er byte sent in alternating frames.

In addition to data, the use of 8b10b en
oding on the event link allows the lo
al

os
illator of ea
h EVR to be phase lo
ked to a referen
e sent by the EVG. The

EVG itself is typi
ally driven from an external os
illator.

When dis
ussing the MRF timing system there are three
lo
ks. The external

referen
e
lo
k for the EVG, the bit
lo
k for trans
eivers, and the Event Clo
k.

The relation between the referen
e and the Event
lo
ks is determined by a

programmable divider in the EVG and is usually a small integer number (eg.

4). The Event
lo
k must be in the range between 50MHz and 125MHz. The

relation between the Event
lo
k and the bit
lo
k is a �xed fa
tor of 20 whi
h

is determined by the frame size des
ribed above.

Fbit/20 = FEvent = FExt/NDivide

2.1 Event Link Data

Data whi
h is transferred over the event link is interpreted in four ways: Event

Codes, DBus bits, Data Bu�ers, and Clo
k Phase. Ea
h
arries a di�erent

meaning, and is used in di�erent ways.

2.1.1 Event Codes

An event is momentary. Typi
ally an event
auses something to happen (a

trigger). The 255 usable event
odes available in the MRF system
an be thought

of as 255 seperate physi
al wires. On every ti
k of the Event Clo
k a pulse is

sent on one (and only one) of the �wires�. Zero is the �idle� event whi
h is sent

when no other event is queued.

EVG

EVR

Repeater ConcentratorRepeater

EVREVR

Repeater

Configuration 1

EVG

EVR EVREVR

Concentrator

Configuration 2

EVR

Concentrator

Figure 1: Two system
on�gurations for the MRF Timing System

5

Event# DBus

Data Buf

8-bits 8-bits

Event#

Event#

Event#

8-bits 8-bits

DBus

DBus

A B

Frame N

Frame N+1

Figure 2: Two supported link allo
ation s
hemes

Event Codes will most often be used as triggers for external delay
hannels.

However, there are a number of event
odes whi
h have spe
ial meaning in the

MRF system. The meaning of all other
odes is left to the system operator.

Code Meaning

0x00 Idle, or null, event. Send when nothing happens.

0x70 Shift 0 into EVR timestamp shift register

0x71 Shift 1 into EVR timestamp shift register

0x7A Reset EVR heartbeat timeout
ounter

0x7B Reset all EVR dividers. Syn
hronize global phase

0x7C In
rement EVR timestamp
ounter (depending on mode)

0x7D Reset timestamp
ounter

0x7F End of sequen
e (not transmitted). Use in other
ontexts is dis
ouraged.

Table 1: Spe
ial Event
odes

2.1.2 Distributed Bus (DBus) bits

The Distributed Bus (DBus)
onsists of 8 bits of data whi
h are stored on every

EVR. This data is initialized to zero when the EVR starts, and overwritten

whenever the EVR re
eives an event frame with DBus data. Depending on

on�guration this is either every frame, or every se
ond frame (See �g. 2).

The DBus
an thus be used to distribute either periodi
, or non-periodi
, signals

with bandwidth up to

1

2
(or

1

4
) of the Event
lo
k.

The bits of the DBus
an be routed to physi
al output. A spe
ial feature of

DBus bit 4 allows its rising edge to in
rement the timestamp
ounter (depending

on mode).

2.1.3 Data Bu�ers

When enabled, a proto
ol is used to broad
ast arbitrary byte arrays from the

EVG to all EVRs. Bytes are sent one at a time in the data part of every se
ond

frame. Spe
ial 8b10b
odes are used to mark the beginning and end for ea
h

transfer. A simple
he
ksum is also sent. The 230 series hardware allows bu�ers

up to 2047 bytes in length.

6

In keeping with the
onvention of the original MRF EPICS Support pa
kage

the �rst byte of a bu�er is used as a header (Proto
ol ID) to identify it. No

restri
tions are pla
ed on the body of bu�er.

2.1.4 Event Clo
k Phase

The use of 8b10b en
oding allows ea
h EVR's lo
al os
illator to lo
k to the

EVG's referen
e
lo
k. This allows operation at speeds higher then the event

lo
k rate. This is used by the CML outputs des
ribed in se
tion 3.5.

2.2 Global Time Distribution

The model of time implemented by the MRF hardware is two 32-bit unsigned

integers:
ounter, and �se
onds�. The
ounter is maintained by ea
h EVR and

in
remented qui
kly. The value of the �se
onds� is sent periodi
ally from the

EVG at a lower rate.

During ea
h �se
ond� 33 spe
ial
odes (see se
. 1) must be sent. The �rst 32

are the shift 0/1
odes whi
h
ontain the value of the next �se
ond�. The last is

the timestamp reset event. When re
eived this
ode transfers the new �se
ond�

value out of the shift register, and resets the
ounter to zero. These a
tions

start the next �se
ond�.

Note that while it is referred to as �se
onds� this value is an arbitrary integer

whi
h
an have other meanings. Currently only one time model is implemented,

but implementing others is possible.

2.2.1 Light Sour
e Time Model

In this model the �se
onds� value is an a
tual 1Hz
ounter. The software default

is the POSIX time of se
onds sin
e 1 Jan. 1970 UTC. Ea
h new se
ond is started

with a trigger from an external 1Hz os
illator, usually a GPS re
eiver. Most

GPS re
eivers have a one pulse per se
ond (PPS) output. Time is
onverted to

the EPICS epo
h (1 Jan. 1990) for use in the IOC.

Several methods of sending the se
onds value to the EVG are possible:

External hardware has been
reated by Diamond light sour
e whi
h
om-

muni
ates with a GPS re
eiver over a serial (RS232) link to re
eive the times-

tamp and
onne
ts to two external inputs on the EVG. These inputs must be

programmed to send the shift 0/1
odes.

7

Downstream

 Event Link

Event Codes DBusClock Phase

Mapping RAM

Pulse Generators
 Special

Functions

Prescaler/

 Dividers

Inputs Outputs

Upstream

Event Link

Event Codes DBus

Figure 3: Logi
al
onne
tions inside an EVR

Time from an NTP server
an be used without spe
ial hardware. This

requires only a 1Hz (PPS) signal
oming from the same sour
e as the NTP

time. Several
ommerial vendors supply dedi
ated NTP servers with builtin

GPS re
eivers and 1Hz outputs. A software fun
tion is provided on the EVG

whi
h is triggered by the 1Hz signal. At the start of ea
h se
ond it sends the

next se
ond (
urrent+1), whi
h will be lat
hed after the following 1Hz ti
k.

3 Re
eiver Fun
tions

Internally an EVR
an be thought of as a number of logi
al sub-units (Fig. 3)

onne
ting the upstream and downstream event links to the lo
al inputs and

outputs. These sub-units in
lude: the Event Mapping Ram, Pulse Generators,

Pres
alers (
lo
k dividers), and the logi
al
ontrols for the physi
al inputs and

outputs.

3.1 Pulse Generators

Ea
h pulse generator has a an asso
iated Delay, Width, Polarity (a
tive low/high),

and (sometimes) a Pres
aler (
lo
k divider). When triggered by the Mapping

Ram it will wait for the Delay time in its ina
tive state. Then it will transi-

tion to its a
tive state, wait for the Width time before transitioning ba
k to its

ina
tive state.

Resolution of the delay and width is determined by the pres
aler. A setting of

1 gives the best resolution.

In addition, the Mapping Ram
an for
e a Pulse Generator into either state

(A
tive/Ina
tive).

Note: Some Pulse Generators do not have a pres
aler. In this
ase the

pres
aler property will always read 0 instead of >=1.

8

3.2 Event Mapping Ram

The Event Mapping Ram is a table used to de�ne the a
tions to be taken by an

EVR when it re
eives a parti
ular event
ode number. The mapping it de�nes is

a many-to-many relations. One event
an
ause several a
tions, and one a
tion

an be
aused by several events.

The a
tions whi
h
an be taken
an be grouped into two
atagories: Spe
ial

a
tions, and Pulse Generator a
tions. Spe
ial a
tions in
lude those related to

timestamp distribution, and the system heartbeat ti
k (see � ?? on page ??

for a
omplete list). Ea
h Pulse Generater has three mapable a
tions: Set

(for
e a
tive), Reset (for
e ina
tive), and Trigger (start delay program). Most

appli
ations will use Trigger mappings.

3.3 Pres
alers (Clo
k Divider)

Pres
aler sub-units take the EVR's lo
al os
illator and output a lower frequen
y

lo
k whi
h is phased lo
ked to the lo
al
lo
k, whi
h is in syn
 with the global

master
lo
k. The lower frequen
y must be an integer divisor of the Event
lo
k.

To provide known phase relationships, all dividers
an be syn
hronously reset

when a mapped event
ode is re
eived. This is the Reset PS a
tion. See ?? on

page ??.

3.4 Outputs (TTL)

This sub-unit represents a lo
al physi
al output on the EVR. Ea
h output may

be
onne
ted to one sour
e: a Distributed Bus bit, a Pres
aler, or a Pulse

Generator (see � ?? on page ?? for a
omplete list).

3.5 Outputs (CML and GTX)

Current Mode Logi
 outputs
an send a bit pattern at the bit rate of the event

link bit
lo
k (20x the Event Clo
k). This pattern may be spe
i�ed in one of

three possible ways.

As four 20 bit sub-patterns (rising, high, falling, and low). As two periods (high

and low). These spe
ify a square wave with variable frequen
y and duty fa
tor.

As an arbitrary bit pattern (<= 40940 bits) whi
h begins when the output goes

[TODO: high or low?℄.

In the sub-pattern mode. The rising and falling patterns are transmitted when

the output level
hanges, while the high and low patterns are repeated in be-

tween level
hanges.

The GTX outputs found only on the EVRTG (e−gun) re
eiver fun
tion similarly
to the CML outputs at twi
e the frequen
y. Thus for this devi
e patterns are

40 bits.

9

3.6 Inputs

An EVR's lo
al TTL input
an
ause several a
tions when triggered. It may be

dire
tly
onne
ted to one of the upstream Distributed Bus bits, it may
ause an

event to be sent on the upstream links, or applied to the lo
al Mapping Ram.

The rising edge of a lo
al input
an be timestamped.

3.7 Global Timestamp Re
eption

Ea
h EVR re
eives syn
hronous time broad
asts from an EVG. Software may

query the
urrent time at any point. The arrival time of
ertain event
odes

an be saved as well. This
an be a

omplished with the 'event' re
ord devi
e

support.

Ea
h EVR may be
on�gured with a di�erent method of in
rementing the times-

tamp
ounter. See se
tion ??.

In addition to being slaved to an EVG, those EVR models/�rmware whi
h

provide a Software Event transmission fun
tion
an send timestamps as well.

This
an be used to simulate timestamps in a standalone environment su
h as

a test lab. see the TimeSr
 property in ?? on page ??.

TimeSr
=0 The default, whi
h disables EVR timestamp generation.

TimeSr
=1 In External mode the EVR will send a timestamp when event 125

is re
eived. Re
eption of 125
an be either from an input, or for DC EVRs

the sequen
er.

TimeSr
=2 In Sys Clo
k mode, the EVR will generate a software 125 event

based on the system
lo
k. This is the simplest standalone mode.

3.8 Data Bu�er Tx/Rx

A re
ipient
an register
allba
k fun
tions for ea
h Proto
ol ID. It will then be

shown the body of every bu�er arriving with this ID.

A default re
ipient is provided whi
h stores data in a waveform re
ord.

4 IOC Deployment

This se
tion outlines a general strategy for adding an EVR to an IOC. First

general information is presented, followed by a se
tion des
ribing the extra steps

needed to use mr�o
2 under Linux.

An example IOC shell s
ript is in
luded as �io
Boot/io
evrmrm/st.
md�.

10

4.1 Devi
e names

All EVGs and EVRs in an IOC are identi�ed by an unique name. This is �rst

given in the IOC shell fun
tions des
ribed below, and repeated in the INP or

OUT �eld of all database re
ords whi
h referen
e it. Both EVGs, and EVRs

share the same namespa
e. This restri
tion is needed sin
e some
ode is shared

between these two devi
es.

4.2 VME64x Devi
e Con�guration

The VME bus based EVRs and EVGs are
on�gured using one of the following

IOC shell fun
tions.

Re
eiver

mrmEvrSetupVME("anEVR" , 3 , 0 x30000000 , 4 , 0x28)

In this example EVR �anEVR� is de�ned to be the VME
ard in slot 3. It is

given the A32 base address of 0x30000000 and
on�gured to interrupt on level

4 with ve
tor 0x28.

Note: VME64x allows for jumpless
on�guration of the
ard, but not auto-

mati
ally assignment of resour
es. Sele
tion of an unused address range and

IRQ level/ve
tor is ne
essarily left to the user.

Note: Before setup is done the VME64 identifer �elds are veri�ed so that

spe
ifying an in
orre
t slot number is dete
ted and setup will safely abort.

4.3 PCI Devi
e Con�guration

PCI bus
ards are identi�ed with the mrmEvrSetupPCI() IOC shell fun
tion.

Sin
e PCI devi
es are automati
ally
on�gured only the geographi
 address

(bus:devi
e.fun
tion) needs to be provided. This information
an usually be

found at boot time (RTEMS) or in /pro
/bus/p
i/devi
es (Linux).

The IOC shell fun
tion devPCIShow() is also provided to list PCI devi
es in

the system.

Re
eiver

mrmEvrSetupPCI ("PMC" , "1:2.0")

This example de�nes EVR �PMC� to be bus 1 devi
e 2 fun
tion 0.

Support for using mTCA slot number is available on some targets (Linux only

as of devlib2 2.9). This does any automati
 lookup of PCI address from slot

11

number. Be aware that PCIe �slot� numbers, while stable a
ross reboots, may

hange with hardware
on�guration, �rmware, or OS upgrades.

mrmEvrSetupPCI ("PMC" , " s l o t =5")

Note: Before setup is done the PCI identifer �elds are veri�ed so that spe
i-

fying an in
orre
t lo
ation is dete
ted and setup will safely abort.

4.4 PCI Setup in Linux

In order to use PCI EVRs in the Linux operating system a small kernel driver

must be built and loaded. The sour
e for this driver is found in 'mrmShared/lin-

ux/'. This dire
tory
ontains a Make�le for use by the Linux kernel build system

(not EPICS).

To build the driver you must have a

ess to a
on�gured
opy of the kernel sour
e

used to build the target system's kernel. If the build and target systems use the

same kernel, then the lo
ation will likely be '/lib/modules/`uname -r`/build'. In

ase of a
ross-built kernel the lo
ation will be elsewhere.

To build the module for use on the host system:

$ make −C / l o
 a t i o n / o f /mrmShared/ l inux \

KERNELDIR=/ l i b /modules / `uname −r ` / bu i ld modu le s_ins ta l l

$ sudo depmod −a

$ sudo modprobe mrf

Building for a
ross-target might look like:

$ make −C / l o
 a t i o n / o f /mrmShared/ l inux \

KERNELDIR=/l o
 a t i o n / o f / k e rn e l / s r
 \

ARCH=arm CROSS_COMPILE=/usr / lo
al /bin /arm− \

INSTALL_MOD_PATH=/l o
 a t i o n / o f / t a r g e t / root \

modu le s_ins ta l l

On
e the module is installed on the running target the spe
ial devi
e �le asso-

iated with ea
h EVR must be
reated. If your target system is running UDEV

this will happen automati
ally. See mrmShared/linux/README for example

UDEV
on�g. If UDEV is not present, then you must do the following.

grep mrf /pro
/ dev i
 e s

254 mrf

mknod −m 666 /dev/ uio0
 254 0

12

If may be ne
essary to
hange the �le permission to allow the IOC pro
ess

to open it. UDEV users may �nd one of the following
ommands useful for

onstru
ting a rules �le.

udevinfo −a −p $ (udevinfo −q path −n /dev/uio0)

udevadm in f o −a −p $ (udevadm i n f o −q path −n /dev/ uio0)

Ea
h additional devi
e adds one to the number (uio1, uio2, ...).

On
e the devi
e �le exists with the
orre
t permissions the IOC will be able to

lo
ation it based on the bus:devi
e.fun
tion given an to mrmEvrSetupPCI().

Note: UIO numbers are not
onsidered during setup sin
e these may
hange

after a reboot. To ensure repeatability only PCI immutable ID �elds, PCIe

�slot� numbers, the address triplet (bus:devi
e.fun
tion) are used.

4.5 Example Databases

The MRFIOC2 module in
ludes example database templates for all supported

devi
es (see �1.3). While ea
h is fully fun
tional, it is expe
ted that most sites

will make modi�
ations. It is suggested that the original be left un
hanged

and a
opy be made with the institute name and other information as a su�x.

(evr-pm
-230.substitutions be
omes evr-pm
-230-nsls2.substitutions).

The authors would like to en
ourage users to send their
ustomized databases

ba
k so that they may be in
luded as examples in future releases of MRFIOC2.

The templates
onsist of a substitutions �le for ea
h model (PMC,
PCI, VME-

RF). This template instan
iates the
orre
t number of re
ords for the input-

s/outputs found on ea
h devi
e. It also in
ludes entries for event mappings and

database events whi
h will be frequent targets for
ustomization.

Ea
h substitutions �le will be expanded during the build pro
ess with the MSI

utility to
reate a database �le with two unde�ned ma
ros (P and C). 'SYS'

and 'D' de�ne a
ommon pre�x shared by all PVs and must be unique in the

system. 'EVR' is a
ard name also given as the �rst argument of one of the

mrmEvrSetup*() IOC shell fun
tions (unique in ea
h IOC).

Thus an IOC with two identi
al VME
ards
ould use a
on�guration like:

mrmEvrSetupVME("evr1" , 5 , 0 x20000000 , 3 , 0 x26)

mrmEvrSetupVME("evr2" , 6 , 0 x21000000 , 3 , 0 x28)

dbLoadRe
ords ("evr−vmerf−230.db" , "SYS=test , D=evr : a , EVR=evr1")

dbLoadRe
ords ("evr−vmerf−230.db" , "SYS=test , D=evr :b, EVR=evr2")

13

4.5.1 autosave

All example database �les in
lude �info()� entries to generate autosave request

�les. The example IOC shell s
ript �io
Boot/io
evrmrm/st.
md� in
ludes the

following to
on�gure autosave.

save_restoreDebug (2)

dbLoadRe
ords (" db/ save_res to reSta tus . db" , "P=mrf te s t : ")

save_res to reSe t_status_pre f ix (" mr f t e s t : ")

s e t_save f i l e_path (" ${mnt}/ as " ,"/ save ")

se t_reques t f i l e_path (" ${mnt}/ as " ,"/ req ")

This enables some extra debug information whi
h is useful for testing, and loads

the autosave on-line status database. It also sets the lo
ations where .sav and

.req �les will be sear
hed for.

s e t_pass0_res to reF i l e (" mrf_sett ings . sav ")

se t_pass0_res to reF i l e (" mrf_values . sav ")

se t_pass1_res to reF i l e (" mrf_values . sav ")

se t_pass1_res to reF i l e ("mrf_waveforms . sav ")

Sets three �les whi
h will be loaded. The �values� are loaded twi
es as is the

autosave
onvention.

i o
 I n i t ()

makeAutosaveFileFromDbInfo(" as / req /mrf_sett ings . req " , " autosaveFie lds_pass0 ")

makeAutosaveFileFromDbInfo(" as / req /mrf_values . req " , " autosaveF ie lds ")

makeAutosaveFileFromDbInfo(" as / req /mrf_waveforms . req " , " autosaveFie lds_pass1 ")

After the IOC has started the request �les are generated. This is where the

�info()� entries in the database �les are used.

reate_monitor_set (" mrf_sett ings . req " , 5 , "")

reate_monitor_set (" mrf_values . req " , 5 , "")

reate_monitor_set ("mrf_waveforms . req " , 30 , "")

Finally the request �les are re-read and monitor sets are
reated.

5 Testing Pro
edures

This se
tion presents several step by step pro
edures whi
h may be useful when

testing the fun
tion of hardware and software.

In the �do
umentation/demo/� dire
tory several IOC shell s
ript �les with the

ommands given in this se
tion as well as other examples.

14

5.1 EVG and EVR Che
kout

This pro
edure requires both a generator, re
eiver, and a �ber jumper
able to

onne
t them.

It is assumed that no
ables are
onne
ted to the front panel of either EVG or

EVR. The example �io
Boot/io
evrmrm/st.
md� s
ript is used with SYS=TST

and D=evr for the re
eiver and D=evg for the generator. Verify this with the

following
ommands at the IOC shell.

>dbgrep ("∗ Link : Clk−SP")

TST{ evr }Link : Clk−SP

>dbgrep ("∗Fra
SynFreq−SP")

TST{evg−EvtClk}Fra
SynFreq−SP

The following examples use the IOC shell
ommands dbpr() and dbpf(). Re-

mote use of
aput and
aget is also possible.

>dbpf ("TST{evg−EvtClk}Sour
e−Se l " ," Fra
Syn ")

>dbpf ("TST{evg−EvtClk}Fra
SynFreq−SP" ,"125 .0")

>dbpf ("TST{ evr }Link : Clk−SP" ,"125 .0")

>dbpf ("TST{ evr }Ena−Se l " ," Enabled ")

>dbpr ("TST{ evr }Link−Sts ")

. . .

. . . VAL: 0

This sets the event link speed on both the EVR and EVG. The EVG is
om-

manded to use its internal synthesizer instead of an external
lo
k.

Now use the �ber jumper
able to
onne
t the TX port of the generator to the

RX port of the re
eiver. (The Tx port will have a faint red light
oming from

it).

On
e
onne
ted the red link fail LED should go o� and the link status PV

should read OK (1).

>dbpr ("TST{ evr }Link−Sts ")

. . .

. . . VAL: 1

At this point the re
eivier has lo
ked to the generator signal, but no data is

being sent. This in
ludes the heartbeat event. Thus the heartbeat timeout

ounter should be in
reasing.

>dbpr ("TST{ evr }Cnt : LinkTimo−I ")

. . .

. . . VAL: 45

>dbpr ("TST{ evr }Cnt : LinkTimo−I ")

. . .

. . . VAL: 47

15

Now we will set up the generator to send a periodi
 event
ode.

>dbpf ("TST{evg−Mx
:0} Pres
a l e r−SP" , "125000000")

>dbpr ("TST{evg−Mx
:0} Frequen
y−RB" ,1)

. . .

EGU: Hz . . .

. . . VAL: 1

>dbpf ("TST{evg−TrigEvt :0} EvtCode−SP" , "122")

>dbpf ("TST{evg−TrigEvt :0} TrigSr
−Se l " , "Mx
0")

>dbpf ("TST{evg−TrigEvt :1} EvtCode−SP" , "125")

>dbpf ("TST{evg−TrigEvt :1} TrigSr
−Se l " , "Mx
0")

>dbpf ("TST{ evr }Evt : Blink0−SP" , "125")

This
on�gures multiplexed
ounter 0 (Mx
 #0) to trigger on the event
lo
k

frequen
y divided by 125000000. In this
ase this gives 1Hz. Trigger event #0

is then
on�gured to send event
ode 122, and trigger event #1 to send
ode

125, when Mx
 #0 triggers.

At this point both the EVG's amber EVENT OUT led and the EVR's EVENT

IN led should �ash at 1Hz.

For diagnosti
s the EVR's Blink0 mapping is
on�gured to blink the EVR's

EVENT OUT led when event
ode 125 is re
eived. Setting to 0 will
ause it to

stop blinking.

Event
ode 122 is the heartbeat reset event. Sin
e it is being sent the link

timeout
ounter should no longer be in
reasing.

>dbpr ("TST{ evr }Cnt : LinkTimo−I ")

. . .

. . . VAL: 120

>dbpr ("TST{ evr }Cnt : LinkTimo−I ")

. . .

. . . VAL: 120

At this point, if the system is given an NTP server the EVG will get a
orre
t

(but unsyn
hronized) time and messages similar to the following will be printed.

S ta r t i ng timestamping

epi
sTime : Wed Jun 01 2011 17 :54 :53 .000000000

TS be
omes va l i d a f t e r f a u l t 4de6b533

The �rst two lines
ome from the EVG and indi
ate that it is sending a times-

tamp. The third line
omes from the EVR and indi
ates that it is re
eiving a

orre
t timestamp.

The
ounter for the 1Hz event should now be in
reasing.

16

>dbpr ("TST{ evr }1hzCnt−I ")

. . . VAL: 5

>dbpr ("TST{ evr }1hzCnt−I ")

. . . VAL: 6

5.2 Timestamp Test

An external 1Hz pulse generator is required for this test. It should be
onne
ted

to front panel input 0 on the EVG. This is LEMO
onne
tor expe
ting a TTL

signal.

>dbpr ("TST{ evr }Link−Sts ")

. . .

. . . VAL: 1

If the event link status is not OK then perform setup as des
ribed in the previous

test.

Che
k the
urrent time sour
e status

>generalTimeReport (2)

Ba
kwards time e r r o r s prevented 0 t imes .

Current Time Prov ide r s : "EVR" , p r i o r i t y = 50

Current Time not a v a i l a b l e

"NTP" , p r i o r i t y = 100

Current Time i s 2011−06−02 10 : 2 3 : 2 6 . 0 58125 .

"OS Clo
k " , p r i o r i t y = 999

Current Time i s 2011−06−02 10 : 2 3 : 2 6 . 0 57101 .

Event Time Prov ide r s :

"EVR" , p r i o r i t y = 50

This shows that the NTP time sour
e is fun
tioning. This is required for this

test.

>dbpf ("TST{evg−TrigEvt :1} EvtCode−SP" , "125")

>dbpf ("TST{evg−TrigEvt :1} TrigSr
−Se l " , "Front0 ")

>dbpf ("TST{ evr }Evt : Blink0−SP" , "125")

Sends event
ode 125 on the rising edge for front panel input 0. For diagnosti
s

sets the blink mapping. If the led is not blinking then
he
k the 1Hz pulse

generator.

dbpr ("TST{ evr }Time : Valid−Sts ")

. . .

. . . VAL: 1

17

Indi
ates that the EVR has re
eived a valid time

>generalTimeReport (2)

Ba
kwards time e r r o r s prevented 0 t imes .

Current Time Prov ide r s : "EVR" , p r i o r i t y = 50

Current Time i s 2011−06−02 10 : 2 6 : 5 0 . 6 83808 .

"NTP" , p r i o r i t y = 100

Current Time i s 2011−06−02 10 : 2 6 : 5 0 . 6 81220 .

"OS Clo
k " , p r i o r i t y = 999

Current Time i s 2011−06−02 10 : 2 6 : 5 0 . 6 83854 .

Event Time Prov ide r s :

"EVR" , p r i o r i t y = 50

Shows that a valid time is now being reported.

$
amonitor TST{ evr :3}Time−I

TST{ evr :3}Time−I 2011−06−02 10 : 3 2 : 1 1 . 9 99993 Thu , 02 Jun 2011 10 : 3 2 : 1 2 −0400

TST{ evr :3}Time−I 2011−06−02 10 : 3 2 : 1 2 . 9 99993 Thu , 02 Jun 2011 10 : 3 2 : 1 3 −0400

TST{ evr :3}Time−I 2011−06−02 10 : 3 2 : 1 3 . 9 99993 Thu , 02 Jun 2011 10 : 3 2 : 1 4 −0400

TST{ evr :3}Time−I 2011−06−02 10 : 3 2 : 1 4 . 9 99993 Thu , 02 Jun 2011 10 : 3 2 : 1 5 −0400

The timestamp indi
ator re
ord takes its re
ord timestamp from the arrival of

the 125 event
ode. As
an be seen, this time is stored immediately before the

sub-se
onds is zeroed. This
an be veri�ed by swit
hing this.

$
aget TST{ evr :3}Time−I .TSE

TST{ evr :3}Time−I .TSE 125

$
aput TST{ evr :3}Time−I .TSE 0

Old : TST{ evr :3}Time−I .TSE 125

New : TST{ evr :3}Time−I .TSE 0

$
amonitor TST{ evr :3}Time−I

TST{ evr :3}Time−I 2011−06−02 10 : 3 5 : 3 1 . 0 05655 Thu , 02 Jun 2011 10 : 3 5 : 3 1 −0400

TST{ evr :3}Time−I 2011−06−02 10 : 3 5 : 3 2 . 0 05655 Thu , 02 Jun 2011 10 : 3 5 : 3 2 −0400

TST{ evr :3}Time−I 2011−06−02 10 : 3 5 : 3 3 . 0 05655 Thu , 02 Jun 2011 10 : 3 5 : 3 3 −0400

TST{ evr :3}Time−I 2011−06−02 10 : 3 5 : 3 4 . 0 05655 Thu , 02 Jun 2011 10 : 3 5 : 3 4 −0400

Now a time lat
hed by software when this re
ord is pro
essed. For real-time

system this time should be stable.

6 Firmware Update

6.1 300-series Devi
es

• PCIe-EVR-300DC

• mTCA-EVR-300

18

• mTCA-EVM-300

These devi
es support upgrade of �rmware through PCIe register a

ess. As

su
h, a failed upgrade will result in an unusable devi
e.

To test if a
ard may be upgrade with this me
hanism, run �ashinfo and

�ashread
ommand. The following shows a devi
e whi
h
an be upgraded.

ep i
 s> mrmEvrSetupPCI ("EVR1" , "03 : 0 0 . 0 ")

. . .

ep i
 s> f l a s h i n f o ("EVR1:FLASH")

Vendor : 20 (Mi
ron)

Devi
e : ba

ID : 18

Capa
ity : 0x1000000

Se
 to r : 0x10000

Page : 0x100

S/N: 23 51 61 31 16 00 14 00 31 26 05 15 ee 45

ep i
 s> f l a sh r e ad ("EVR1:FLASH" , 0 , 64)

00090 f f 0 0 f f 0 0 f f 0 0 f f 0 0000 0161001 f

70636965 65767233 30306463 3b557365

7249443d 30584646 46464646 46460062

000
376b 37307466 62673637 36006300

ep i
 s>

Before upgrading, it is suggested to ba
kup the existing �rmware. If the size

of the existing �rmware is known, then this size
an be used. Otherwise, use

the
apa
ity reported by �ashinfo. All Xilinx bit �les for a parti
ular devi
e

typi
ally have the same size.

In this example of a PCIe-EVR-300DC with the 207.0 �rmware, the exa
t size

is 3011417 bytes, whi
h we arbitrarily round up to 3MB.

ep i
 s> f l a sh r e ad ("EVR1:FLASH" , 0 , 0x300000 , "PCIe−EVR−300DC. 2 0 7 . 0 . ba
kup . b i t ")

| 3080192

. . .

Now write the new �rmware �le.

ep i
 s> f l a s hw r i t e ("EVR1:FLASH" , 0 , "PCIe−EVR−300DC. 2 0 7 . 6 . b i t ")

If the update pro
ess is interrupted, do not power
y
le! Re-run the update

pro
ess to
ompletion.

After the write
ompletes su

essfully, power
y
le the
ard to load the new bit

�le.

19

6.2 VME EVRs and EVGs

Update for VME
ards is a

omplished through the ethernet ja
k label �10

BaseT�. The pro
edure
overed in the MRF manual.

6.3
PCI-EVRTG-300

Undo
umented.

6.4 PMC-EVR-230

Firmware update for the PMC module EVR is a

omplished through a JTAG

interfa
e as with the
PCI-EVRTG-300. For reasons of physi
al spa
e the JTAG

wires are not brought to a
onne
tor, but
onne
ted to 4 I/O pins of the PLX

9030 PCI bridge
hip. In order to
ontrol these pins and update the �rmware

some additional software is needed. Software update may be performed by using

either the parallel port support or through JTAG pins. The running Kernel must

be built with the CONFIG_GENERIC_GPIO and CONFIG_GPIO_SYSFS

options if the latter approa
h is to be used.

If the parallel port support is available, a message is printed to the kernel log

when the Linux kernel module provided with mr�o
2 (mrmShared/linux) is

loaded.

Emulating
ab l e : Minimal

The kernel module also exposes the 4 I/O pins via the Linux GPIO API. The

4 pins are numbered in the order: TCK, TMS, TDO, and TDI. The number of

the �rst pin is printed to the kernel log when the MRF kernel module is loaded.

GPIO setup ok , JTAG ava i l a b l e at b i t 252

In this example the 4 pins would be TCK=252, TMS=253, TDO=254, and

TDI=255.

6.4.1 Creating an SVF �le from a BIT �le

The �rmware �le will likely be supplied in one of two formats having the ex-

tensions .bit or .svf. If the provided �le has the extension .svf then pro
eed to

se
tion 6.4.2.

To
onvert a .bit �le to a .svf �le it is ne
essary to get the iMPACT programming

tool from Xilinx. The easiest way to do this is with the �Lab Tools� bundle.

20

http://www.xilinx.
om/support/download/index.htm

The following instru
tions are for iMPACT version 14.2.

1. Install and run the iMPACT program.

2. When prompted to
reate a proje
t
li
k
an
el

3. On the left side of the main window is a pane titled �iMPACT FLows�.

Double
li
k on �Create PROM File�

4. Sele
t �Xilinx Flash/PROM� and
li
k the �rst green arrow.

5. Sele
t �Platform Flash� and �x
f08p� and
li
k �Add Storage Devi
e� then

the se
ond green arrow.

6. Sele
t an output �le name and path. Ensure that the �le format is MCS.

Cli
k OK

7. Several small dialogs will appear. When prompted to �Add devi
e� sele
t

the .bit �le provided by MRF.

8. When prompted to add another devi
e
li
k No.

9. On the left side of the main window is a pane titled �iMPACT Pro
esses�.

Double
li
k on �Generate File�.

10. The .m
s �le should now be written.

11. Exit and restart iMPACT.

See http://www.xilinx.
om/support/do
umentation/user_guides/ug161.

pdf starting on page 67 for more detailed instru
tions.

1. Create a new iMPACT proje
t. Sele
t �Prepare a Boundary-S
an File�

and the SVF format.

2. When prompted, sele
t a name for the resulting .svf �le

3. When prompted to �Assign New Con�guration File� sele
t the .m
s �le

just
reated.

4. When prompted to sele
t a PROM type
hoose �x
f08p�

5. An i
on representing the PROM should now appear as the only entry in

the JTAG
hain.

6. Right
li
k on this i
on and sele
t Program.

7. In the dialog whi
h appears
he
k Verify and
li
k OK.

8. The .svf �le should now be written.

9. Exit iMPACT

21

http://www.xilinx.com/support/download/index.htm
http://www.xilinx.com/support/documentation/user_guides/ug161.pdf
http://www.xilinx.com/support/documentation/user_guides/ug161.pdf

6.4.2 Programming with UrJTAG

http://urjtag.org/

As of August 2012 support to the Linux GPIO �
able� was not in
luded in any

UrJTAG release. It is ne
essary to
he
kout and build the development version

(
ommit id b6945f
65 from 9 Aug. 2012 works). This requires the Git version

ontrol tool. To build and use UrJTAG on target system, there may be a need

to install
ertain pa
kages in the system.

$ sudo apt−get i n s t a l l p
 i u t i l s make auto
onf autopoint l i b t o o l

pkg−
 on f i g bison l ibusb−1.0−0−dev l ibusb−dev f l e x python−dev

With all ne
essary tools available,
on�gure and build UrJTAG.

$ g i t
 l one g i t : // u r j t a g . g i t . s ou r
 e f o r g e . net / g i t r o o t / u r j t a g / u r j t a g

$
d u r j t a g / u r j t a g s

$. / autogen . sh −−d i sab l e−n l s −−d i sab l e−python −−p r e f i x=$PWD/usr

$ make && make i n s t a l l

Firmware update may be performed using the parallel port support if available,

e.g. when loading the kernel driver:

$ sudo modprobe uio

$ sudo modprobe parport

$ sudo insmod mrf . ko

$ dmesg

. . .

[69 .046938 ℄ mrf−p
 i 0000 :08 :0 d . 0 : MRF Setup
omplete

[69 .047007 ℄ mrf−p
 i 0000 :09 :0 e . 0 : PCI IRQ 72 −> rerouted to l ega
y IRQ 16

[69 .047589 ℄ mrf−p
 i 0000 :09 :0 e . 0 : GPIOC 00249412

[69 .047626 ℄ mrf−p
 i 0000 :09 :0 e . 0 : GPIO setup ok , JTAG ava i l a b l e at b i t 252

[69 .144196 ℄ mrf−p
 i 0000 :09 :0 e . 0 : Emulating
ab l e : Minimal

[69 .144239 ℄ mrf−p
 i 0000 :09 :0 e . 0 : MRF Setup
omplete

. . .

The �Emulating
able: Minimal� message indi
ates that Minimal JTAG
able

type
an be used to
ommuni
ate with a devi
e. A ppdev devi
e should be

available for usage with UrJTAG:

$ sudo modprobe ppdev

$ dmesg

. . .

[69 .028268 ℄ ppdev : user−spa
e p a r a l l e l port d r i v e r

. . .

$ l s /dev | grep parport

parport0

22

http://urjtag.org/

On the target system run UrJTAG as root:

./ usr / bin / j t a g

jtag>
ab l e Minimal ppdev /dev/ parport0

I n i t i a l i z i n g ppdev port /dev/parport0

jtag> dete
 t

IR length : 26

Chain l ength : 2

Devi
e Id : 00100001001000111110000010010011 (0 x2123E093)

Manufa
turer : X i l inx (0 x093)

Part (0) : x
2vp4 (0 x123E)

Stepping : 2

Filename : / ep i
 s / u r j t a g / share / u r j t a g / x i l i n x /x
2vp4 /x
2vp4

Devi
e Id : 11100101000001010111000010010011 (0 xE5057093)

Manufa
turer : X i l inx (0 x093)

Part (1) : x
 f08p (0 x5057)

Stepping : 14

Filename : / ep i
 s / u r j t a g / share / u r j t a g / x i l i n x / x
f08p / x
f08p

jtag> part 1

jtag> sv f / l o
 a t i o n / o f /pm
−prom . sv f stop p rog r e s s

Alternatively, a GPIO
able may be utilized if the kernel was built with options

required (CONFIG_GENERIC_GPIO and CONFIG_GPIO_SYSFS), on the

target system run UrJTAG as root (or a user whi
h
an export and use GPIO

pins).

./ usr / bin / j t a g

jtag>
ab l e gpio t
k=252 tms=253 tdo=254 td i=255

jtag> dete
 t

IR length : 26

Chain l ength : 2

Devi
e Id : 00100001001000111110000010010011 (0 x2123E093)

Manufa
turer : X i l inx (0 x093)

Part (0) : x
2vp4 (0 x123E)

Stepping : 2

Filename : / ep i
 s / u r j t a g / share / u r j t a g / x i l i n x /x
2vp4 /x
2vp4

Devi
e Id : 11100101000001010111000010010011 (0 xE5057093)

Manufa
turer : X i l inx (0 x093)

Part (1) : x
 f08p (0 x5057)

Stepping : 14

Filename : / ep i
 s / u r j t a g / share / u r j t a g / x i l i n x / x
f08p / x
f08p

jtag> part 1

jtag> sv f / l o
 a t i o n / o f /pm
−prom . sv f stop p rog r e s s

Note that the devi
e IDs may not be
orre
tly re
ognized. This will not e�e
t

the programming pro
ess.

If no errors are printed then the update pro
ess was su

essful. The new

�rmware will not be loaded until the PMC module is reset (power
y
le sys-

tem).

23

7 NTPD Time Sour
e

It is possible to use an EVR as a time sour
e for the system NTP daemon on

Linux. This is implemented using the shared memory
lo
k driver (#28).

http://www.ee
is.udel.edu/~mills/ntp/html/drivers/driver28.html

An IOC is
on�gured to write data to a shared memory segment by adding a

line to its start s
ript.

time2ntp (" evrname " , N)

Here �evrname� is the same name given when
on�guring the EVR (see 4.1).

The memory segment ID number N must be between 0 and 4 in
lusive. The

NTP daemon enfor
es that segments 0 and 1 require root permissions to use.

Segments 2, 3, and 4
an be a

essed by an unprivileged user.

It is suggested to use an unprivileged segment to avoid running the IOC as root.

However, this would allow any user on the system to e�e
tively
ontrol NTPD.

So it is not re
ommended for systems with untrusted users.

The NTP daemon is
on�gured from the �le /et
/ntp.
onf. On Debian Linux

systems using DHCP it will be ne
essary to modify /et
/dh
p/dh
lient-exit-

hooks.d/ntp instead.

s e r v e r 127 . 1 27 . 2 8 .N minpol l 1 maxpoll 2 p r e f e r

fudge 127 . 1 27 . 2 8 .N r e f i d EVR

This will
on�gure NTPD to read time from segment N. Here N must mat
h

what was spe
i�ed for time2ntp().

When fun
tioning
orre
tly NTPD status should look like:

$ ntpq −p

remote r e f i d s t t when p o l l rea
h delay o f f s e t j i t t e r

===

+time .
s . n s l s 2 . l .GPS. 1 u 29 64 377 2.684 −0.001 0.089

∗SHM(3) .EVR. 0 l 7 8 377 0.000 0.000 0.001

The shared memory interfa
e
an only be used to provide time with mi
rose
ond

pre
ision. So this measurement, taken from a produ
tion NSLS2 server, showing

a jitter of ±1 mi
rose
ond is the best whi
h
an be obtained.

If the propagation time from the time sour
e to the EVR is known, then the

o�set
an be given by adding �time1 0.XXX� to the 'fudge' line in ntp.
onf.

24

http://www.eecis.udel.edu/~mills/ntp/html/drivers/driver28.html

8 Bu�ered Timestamp Capture

Some appli
ations are interested in the pre
ise re
eption timestamp of an asyn-

hronous event
ode. For example, an External event
ode from an EVR Input.

Further, if this Input/event
ode o

urs at a high rate, it is preferable for soft-

ware to pro
ess re
eption times in bat
hes.

The motivating use
ase for this feature was monitoring of a rotational en
oder

whi
h produ
es a pulse on
rossing a parti
ular angle. The times of this
rossing

are needed to
al
ulate frequen
y and phase. Further,
rossing o

ur at ~1KHz.

Bu�ers are setup by loading instan
es of the db/mrmevrtsbuf.db database. Many

bu�ers may be loaded. While un-useful it is possible to asso
iate multiple bu�ers

with the same event
ode.

dbLoadRe
ords (" db/evr−p
ie −300d
 . db" ,"SYS=TST, D=evr : 1 , EVR=EVR,\

FEVT=125")

dbLoadRe
ords (" db/mrmevrtsbuf . db" , "SYS=TST, D=evr :1− t s : 1 , EVR=EVR,\

CODE=20, TRIG=10, FLUSH=TimesRelFlush ")

In this example, the (optional) CODE and TRIG ma
ros name two event
odes.

CODE=20 is the event for whi
h the re
eption time will be
aptured. The (also

optional) TRIG=10 is an event for whi
h re
eption will
ause the internal bu�er

of timestamps to be �ushed to a waveform re
ord. Alternately, �ushing
an be

triggered by another re
ord.

The CODE and TRIG ma
ros are setting the default values of �elds whi
h may

be
hanged at runtime.

Ea
h waveform re
ord whi
h present timestamps does so in a format determined

by the FLUSH ma
ro.

TimesRelFlush Elements are times in nanose
onds relative to the �ushing

a
tion (either �ush event
ode, or manual �ush). The time of the �ush-

ing a
tion is stored as the re
ord timestamp. Element values are always

negative. This is the default if FLUSH is not set.

TimesRelFirst Elements are times in nanose
onds relative to the time of the

�rst event re
eived after a previous �ush. The time of the �rst event is

stored in the re
ord timestamp. Element values are always positive, and

the �rst element value is always zero.

9 Implementation Details

Details of some parts of the driver whi
h may be useful in understanding (and

trouble shooting) the behavior of the driver.

25

9.1 Event
ode FIFO Bu�er

Ea
h EVR implements a hardware First In First Out bu�er for event
odes.

When
ertain �interesting� event
ode numbers are re
eived the
ode and arrival

time are pla
ed in this bu�er. Two interrupt
ondition are generated by the

FIFO: not empty, and full. The �rst is asserted when the �rst event added, and

leared when the last event is removed. The se
ond o

urs when last free entry

in the bu�er is
onsumed. Further event o

urren
es are lost.

When the not empty interrupt o

urs the �fo drain task (named EVRFIFO in

epi
sThreadShowAll()) is woken up by a message queue. This task runs at s
an

high priority (90). On
e awakened it will remove at most 512 event
odes from

the bu�er before sleeping again. The number 512 is an arbitrary number
hosen

to prevent the starvation of lower priority tasks if a high frequen
y event
ode

is a

identally mapped into the FIFO. A minimum sleep time is enfor
ed by the

mrmEvrFIFOPeriod variable. This governs the maximum rate that events

an be reported through the FIFO. Setting to 0 will disable it.

Ea
h of the event
odes 1-255 has an IOSCANPVT and a list of
allba
k fun
-

tions (type EVR::eventCallba
k) whi
h will be invoked when the event o

urs.

An invo
ation of an IOSCANPVT list may pla
e an arbitrary number of CALL-

BACKs into the message queue of the three EPICS
allba
k s
an tasks (High,

Medium, and Low). If these message queues are over�owed then CALLBACK

in other drivers my be lost. The s
anIoRequest() fun
tion does not report this

error prior to Base 3.15.0.2.

To avoid this disastrous o

urren
e the EVR driver will not re-run the s
an

list for an event, until all a
tions at all priorities from the previous run have

�nished. This is implemented by pla
ing a spe
ial sentinel CALLBACK in all

three queues. An event will not be re-run until all three of the CALLBACK

have run.

The FIFO servi
ing
ode
an indi
ate two error
onditions. O

urren
es of

these errors are re
orded in the FIFO Overflow Count and FIFO Over rate

ounters.

The FIFO Overflow Count gives the number of times the hardware FIFO bu�er

has over�owed. This is a serious error sin
e arbitrary event
ode (in
luding the

timestamping
odes) will be lost.

The FIFO Over rate
ounter
ounts the number of times any event reo

urred

before the a
tions of the last o

urren
e were �nished pro
essing. This is less

serious sin
e other event
odes are not e�e
ted.

9.2 Data Bu�er re
eption

Ea
h EVR
an re
eive a single data bu�er. On
e a data message has been

re
eived, the re
eption engine is disabled to allow time to download the bu�er.

26

Then the engine
an be re-enabled in preparation for the next message. An

interrupt is generated when the message has been fully re
eived, and the engine

disabled.

Instead of a separate thread, bu�er re
eption is implemented as a two stage

allba
k run by the High (�rst) and Medium (se
ond) priority s
an tasks. The

�rst
allba
k
opies the bu�er into memory and immediately re-enables bu�er

re
eption, it then passes the data to the se
ond
allba
k. This
allba
k passes

the bu�er to a list of user
allba
k fun
tions whi
h have registered interest in

the Proto
ol ID found in the message header.

9.3 Timestamp validation

It is impossible to verify a time without a se
ond trusted referen
e. Sin
e su
h

a referen
e is not generally available, the driver
an only make some
he
ks

against
orruption.

The se
onds part of the timestamp should only
hange when the 1Hz reset event

(125) is re
eived from the EVG. Therefore a
allba
k is atta
hed to that event

ode. When a new se
onds value arrives it is
ompared to the previous stored

value. If it is exa
tly 1 greater then it is taken to be the new se
onds value. If

it is not then the EVR time is de
lared invalid.

When the time is invalid, it
an only be
ome valid after �ve sequential se
onds

values are re
eived. Any out of sequen
e value resets the
ount.

10 EVR Devi
e Support Referen
e

The EPICS support module for MRF devi
es
onsists of a number of supports

whi
h are generally tied to a spe
i�
 logi
al sub-unit. Ea
h sub-unit may be

thought of as an obje
t having a number of properties. For example, ea
h Delay

Generator has properties 'Delay' and 'Width'. These properties
an be read or

modi�ed in several ways. A delay
an spe
i�ed as an integer number of ti
ks

of its referen
e
lo
k (hardware view), or in se
onds as a �oating point number

(user view).

In this example the properties 'Delay' and 'Width' should be settable in exa
t

integer as well as the more useful, but impre
ise, �oating point units (eg. se
-

onds). This needs to be a

omplished by two di�erent devi
e supports (longout,

and ao). Of
ourse it is also useful to have some
on�rmation that settings have

been applied so read-ba
ks are desireable (longin, ai).

Some of the devi
e supports de�ned are as follows. The full list is given in

mrfCommon/sr
/mrfCommon.dbd.

27

dev i
e (l ong in , INST_IO , devLIFromUINT32 , "Obj Prop uint32")

dev i
e (l ong in , INST_IO , devLIFromUINT16 , "Obj Prop uint16")

dev i
e (l ong in , INST_IO , devLIFromBool , "Obj Prop bool")

dev i
e (a i , INST_IO , devAOFromDouble , "Obj Prop double")

dev i
e (a i , INST_IO , devAOFromUINT32 , "Obj Prop uint32")

dev i
e (a i , INST_IO , devAOFromUINT16 , "Obj Prop uint16")

Unless otherwise noted, all devi
e support use INST_IO input/output links

with the format:

�OBJ=$ (OBJECTNAME) , PROP=Property Name

Sin
e the Pulser sub-unit has the property 'Delay' whi
h supports both integer

and �oat settings, the following database
an be
onstru
ted.

re
ord (ao , "$(PN)Delay−SP")

{

f i e ld (DTYP, "Obj Prop double")

f i e ld (OUT , "�OBJ=$(OBJ) , PROP=Delay")

f i e ld (PINI , "YES")

f i e ld (DESC, "Pulse Generator $(PID)")

f i e ld (FLNK, "$(PN)Delay−RB")

}

re
ord (ai , "$(PN)Delay−RB")

{

f i e ld (DTYP, "Obj Prop double")

f i e ld (INP , "�OBJ=$(OBJ) , PROP=Delay")

f i e ld (FLNK, "$(PN)Delay :Raw−RB")

}

re
ord (longin , "$(PN)Delay :Raw−RB")

{

f i e ld (DTYP, "Obj Prop uint32")

f i e ld (INP , "�OBJ=$(OBJ) , PROP=Delay")

}

This provides setting in engineering units and readba
ks in both EGU and raw

for the delay property.

Note: In is inadvisible to have to more then one output re
ord pointing to the

same property of the same devi
e. However, it is allowed sin
e there are
ases

where this is desireable.

Note: Do
umentation of individual devi
e support may be found in the example

database �les.

10.1 Per-devi
e Database Files

Several database are installed by default for use with
ertain devi
es. Use with

di�erent devi
es is not an error, but will result in warnings being printed for

sub-units in
luded in the database �le, but not physi
ally present.

28

• db/evr-
p
i-230.db

• db/evr-
p
i-300.db

• db/evr-mt
a-300.db

• db/evr-p
ie-300d
.db

• db/evr-pm
-230.db

• db/evr-tg-300.db

• db/evr-vmerf-230.db

10.2 Spe
ial Database Files

Several database �les are provided to augment the per-devi
e �les. These op-

tional �les are not tied to a spe
i�
 hardware sub-unit.

• db/evrevent.db

Adds a re
eption
ounter for a spe
i�
 event
ode.

• db/mrmevrtsbuf.db

Adds a
apture bu�er for re
eption times of a
ertain, fast, event
ode.

• db/evralias.db

A set of alias() entries to give an alternative (appli
ation spe
i�
) name pre�x(s)

for anEVR pulser.

• db/databuftx.db

• db/mrmevrbufrx.db

Examples of sending and re
eiving a data bu�er.

• db/evrNtp.db

Status for the builtin NTP
lo
k driver.

29

	1 What is Available?
	1.1 Prerequisites
	1.2 Source
	1.3 Supported Hardware

	2 System Overview
	2.1 Event Link Data
	2.2 Global Time Distribution

	3 Receiver Functions
	3.1 Pulse Generators
	3.2 Event Mapping Ram
	3.3 Prescalers (Clock Divider)
	3.4 Outputs (TTL)
	3.5 Outputs (CML and GTX)
	3.6 Inputs
	3.7 Global Timestamp Reception
	3.8 Data Buffer Tx/Rx

	4 IOC Deployment
	4.1 Device names
	4.2 VME64x Device Configuration
	4.3 PCI Device Configuration
	4.4 PCI Setup in Linux
	4.5 Example Databases

	5 Testing Procedures
	5.1 EVG and EVR Checkout
	5.2 Timestamp Test

	6 Firmware Update
	6.1 300-series Devices
	6.2 VME EVRs and EVGs
	6.3 cPCI-EVRTG-300
	6.4 PMC-EVR-230

	7 NTPD Time Source
	8 Buffered Timestamp Capture
	9 Implementation Details
	9.1 Event code FIFO Buffer
	9.2 Data Buffer reception
	9.3 Timestamp validation

	10 EVR Device Support Reference
	10.1 Per-device Database Files
	10.2 Special Database Files

