
 Version 1.0

1

Basic description of the KETEK DPP3 low-
level communication

In the following general information regarding the DPP3 low-level command set, user data concept,

and firmware update functionality will be given.

1 Contents
1. DPP3 command set ... 3

1.1. Parameters of the DPP3 .. 3

1.1.1. Parameter ID ... 3

1.1.2. Parameter name .. 3

1.1.3. Parameter description ... 3

1.1.4. Type ... 3

1.1.5. Minimum write value .. 3

1.1.6. Maximum write value .. 3

1.1.7. Value description ... 3

1.1.8. Request syntax .. 3

1.1.9. Response syntax .. 4

1.2. Structure of requests ... 4

1.2.1. Standard structure of requests ... 4

1.2.2. Special structure of requests ... 4

1.3. Structure of responses .. 5

1.3.1. Standard structure of responses ... 5

1.3.2. Special structure of responses .. 6

1.4. Example ... 8

1.4.1. Configuration of the DPP3: .. 8

1.4.2. Start of the run .. 9

1.4.3. Read run status .. 10

1.4.4. Read MCA data: ... 11

2. DPP3 user data concept .. 12

2.1. Parameter values in the working copy .. 12

2.2. Non-volatile parameter values .. 12

2.3. Recovery of the DPP3 using the default-button ... 13

3. Update of the DPP firmware ... 14

3.1. Firmware memory concept ... 14

 Version 1.0

2

3.2. Tools for updating the firmware ... 14

3.3. Updating the firmware using low-level communication ... 14

3.3.1. Open the firmware file .. 14

3.3.2. Segmentation of the firmware .. 15

3.3.3. Unlock update feature on the DPP3 .. 15

3.3.4. Delete the current update image on the DPP3 ... 15

3.3.5. Write firmware sections to the DPP3 and verify data ... 16

3.3.6. Reboot of the DPP3 ... 17

 Version 1.0

3

1. DPP3 command set
In this chapter the general commend set of the DPP3 using low-level communication will be

described. The command set is equal for each interface of the DPP3 (Ethernet, USB, and SPI). All data

are transmitted from most significant to least significant bit (MSb first). Please note that in case of

SPI communication application data (requests to the DPP3 and responses from the DPP3) are

exchanged using the SPI protocol described in the document “DPP3_SPI_Description”.

1.1. Parameters of the DPP3
The documenet “DPP3_Complete_Parameter_Set_Overview” contains all parameters of the KETEK

DPP3. The columns of the sheet are described in the following:

1.1.1. Parameter ID
Each parameter is identified using a unique number which is called parameter ID. The listed values

are in decimal representation.

1.1.2. Parameter name
The name of the parameter.

1.1.3. Parameter description
Brief description of the parameter.

1.1.4. Type
The type of the parameter. Three types of parameters are distinguished:

• Read/Write (“R/W”): For parameters of this type read and write operations are possible.

Therefore, the current value of the parameter can be read out or a new value can be written

by the user.

• Read only (“R”): For parameters of this type only read operations are permitted. Write

operations will be rejected with an error code.

• Function (“Func”): Accessing parameters of this type triggers the execution of a certain

action in the DPP (e.g., start a measurement). Read operations are meaningless since there

are no values linked to these parameters.

1.1.5. Minimum write value
Minimum allowed value of write operations for the parameter. The listed values are in decimal

representation. Trying to write a value below this limit will cause an error code in the response.

1.1.6. Maximum write value
Maximum allowed value of write operations for the parameter. The listed values are in decimal

representation. Trying to write a value above this limit will cause an error code in the response.

1.1.7. Value description
Description how values for the parameter are interpreted.

1.1.8. Request syntax
Indication whether requests are constructed according to the standard syntax (see: 1.2.1 Standard

structure of requests) or if there is a special syntax (see: 1.2.2 Special structure of requests) for the

parameter.

 Version 1.0

4

1.1.9. Response syntax
Indication whether responses can be interpreted according to the standard syntax (see: 1.3.1

Standard structure of responses) or if there is a special syntax (see: 1.3.2 Special structure of

responses) for the parameter.

1.2. Structure of requests
In the following, the syntax of requests to the DPP3 will be described.

1.2.1. Standard structure of requests
Most parameters of the DPP3 are accessible by the following structure. These parameters are noted

with request syntax “standard”. The standard syntax consists of a 4-byte data frame:

Parameter ID Command MSByte of data LSByte of data

The parameter ID is the unique number of each parameter (see: 1.1 Parameters of the DPP3) with a

width of 1 byte. The command specifies the operation of the request and can be either 0x00 for a

read operation or 0x01 for a write operation. For parameter of the type “func” arbitrary values for

the command can be used. The last two bytes of the request contain the data of the request, which

are only used for write operations and some parameters of the type “func”. For read operations

arbitrarily data can be used in the request.

The user can send multiple requests in one transmission. Up to 32 data frames with 4 bytes each can

be stacked. Stacked requests are processed serially in the DPP3 and in the same way as if they are

transmitted individually.

1.2.2. Special structure of requests
Some parameters use a different syntax than the one described above. These parameters are noted

with request syntax “Non-standard” in the parameter overview file.

ID 19 - MCA Read

Requests of the parameter “MCA read” (ID 19) use the same 4-byte structure as standard-

parameters. However, stacked data frames are not permitted with this parameter. The parameter

must be transmitted individually, otherwise a status-code 0x08 (see: 1.3.1 Standard structure of

responses) will be returned.

ID 71 - MCU Passthrough

The parameter “MCU Passthrough” (ID 71) is used to transmit data to the MCU. The MCU can be

controlled using datagrams described in the additional document “Definition_MCU_Datagram”. In

order to communicate with the MCU the parameter ID 71, followed by the command 0x01, followed

by the datagram is send to the DPP3:

Parameter ID Command MCU datagram

71 0x01 Frist byte of datagram … Last byte of datagram

The DPP3 passes the datagram to the MCU, reads the response of the MCU and returns the response

to the user. Stacked data frames are not permitted with this parameter. The parameter must be

transmitted individually, otherwise a status-code 0x08 (see: 1.3.1 Standard structure of responses)

will be returned.

 Version 1.0

5

ID 84 - Get Event Scope

Requests of the parameter “Get Event Scope” (ID 84) have the same 4-byte structure as standard-

parameters. However, stacked data frames are not permitted with this parameter. The parameter

must be transmitted individually, otherwise a status-code 0x08 (see: 1.3.1 Standard structure of

responses) will be returned.

ID 92 - Write Firmware Section

The parameter “Write Firmware Section” (ID 92) is used to update the DPP firmware. Stacked data

frames are not permitted with this parameter. The parameter must be transmitted individually,

otherwise a status-code 0x08 (see: 1.3.1 Standard structure of responses) will be returned. The

parameter can only be called successfully after “Delete Firmware” (ID 91) was requested, otherwise a

status-code 0x08 (see: 1.3.1 Standard structure of responses) will be returned. After calling “Delete

Firmware” (ID 91) every firmware section can be written one time. If the device is power cycled

“Delete Firmware” (ID 91) has to be called again. The DPP firmware consists of 4096 sections

(sections number 0 to 4095) with a length of 1024 byte each. In order to write a firmware section,

the following request structure is used:

Parameter ID Command Section number Firmware data

92 0x01
(irrelevant)

Section
number MSB

Section
number LSB

First data
byte of
firmware

… 1024th data
byte of
firmware

Therefore, the request has a total length of 1028 byte. The response of the DPP3 will be a standard 4-

byte data frame with the following structure:

Parameter ID Status code Section number

92 Status code Section number MSB Section number LSB

The internal processing time of this parameter is higher (typically 1ms) than for most other

parameters.

1.3. Structure of responses

1.3.1. Standard structure of responses
Most parameters of the DPP3 use this response structure. These parameters are noted with

response syntax “standard” in the parameter overview. The standard structure consists of a 4-byte

data frame:

Parameter ID Status code Data MSByte Data LSByte

The parameter ID is the unique number of each parameter (see: 1.1 Parameters of the DPP3) with a

width of 1 byte. The second byte of the response indicates the status of the request. The status byte

is 0x00 if the request was processed successfully. Any other status byte indicates an error during

request processing. The last two bytes of the response contain the data. The following table contains

all status codes that may be returned together with the corresponding interpretation of data bytes:

Status code Description Interpretation of data bytes

0x00 Request was processed successfully Valid parameter value

 Version 1.0

6

0x01 Error: Requested value is out of range and
cannot be applied

Closed valid value for requested
parameter and value

0x02 Error: Requested parameter can only be read,
write request is declined

0x0000

0x03 Error: Requested parameter does not exist 0x0000

0x04 Error: Incorrect command byte 0x0000

0x05 Error: Requested parameter can currently not
be accessed (e.g., measurement running, DPP
in power down)

0x0000

0x06 Error: DPP-internal timeout occurred 0x0000

0x07 Error: Unexpected length of data 0x0000

0x08 Error: Incorrect syntax of request 0x0000

If multiple requests were sent in one transmission the responses are also send in one transmission

and stacked equivalent to the requests.

1.3.2. Special structure of responses
Some responses use a different syntax than the one described above. These parameters are noted

with response syntax “Non-standard” in the parameter overview file.

ID 18 - Runtime Statistics Read

The response for “Runtime Statistics Read” (ID 18) has a length of 13 x 4Byte with the following

structure:

Parameter ID Status code Parameter value MSB Parameter value LSB

5 0x00 MSByte of “Run
Active” (ID 5)

LSByte of “Run Active”
(ID 5)

6 0x00 MSByte of “Realtime
Low” (ID 6)

LSByte of “Realtime
Low” (ID 6)

…

17 0x00 MSByte in „Output
Count Rate High” (ID
17)

LSByte in „Output
Count Rate High” (ID
17)

Therefore, this function is used for synchronous readout of the parameters ID 5 to 17 (see parameter

overview document “DPP3_Complete_Parameter_Set_Overview”. This is useful if the user wants to

calculate further statistics with the values (e.g., deadtime ratio) and wants to avoid time delays due

to successive readout of the values.

ID 19 - MCA Read

The parameter “MCA Read” (ID 19) is used to read out MCA data from the DPP3. The response

consists just of the MCA data (no header) and the size is determined by the current settings of “MCA

Number of Bins” (ID 20) and “MCA Bytes per Bin” (ID 21). The counts of each bin are transferred with

the LSByte first. Transmission begins with bin 0.

Example: Parameter ID 20 „MCA Number of Bins” is set to 13 and parameter ID 21 „MCA Bytes per

Bin” is set to 2. “MCA Read” returns 2^13 x 2 byte = 8192 x 2 byte = 16384 byte. The first byte of the

data is the LSByte of Bin 0 and the last transferred byte is the MSByte of bin 8191:

MCA data

 Version 1.0

7

LSByte of
bin 0

MSByte of
bin 0

LSByte of
bin 1

MSByte of
bin 1

… LSByte of
bin 8191

MSByte of
bin 8191

ID 71 - MCU Passthrough

The parameter “MCU Passthrough” (ID 71) is used to transmit data to the MCU. The response

consists of a header with a length of 2 byte, followed by the response of the MCU. The header

contains the following information:

Parameter ID Status code

71 Status of passthrough
process

The second byte of the header indicates the status of the UART transmission:

0: Success

1: UART Timeout (no MCU response received)

2: DPP-internal memory error

3: Incomplete datagram was requested

ID 79 - Read all parameters

The parameter “Read all parameters” (ID 79) can be used to read out the entire parameter memory

of the DPP3 with one request for diagnosis purposes. The response consists of 256 x 4 byte with the

following structure:

Parameter ID Status code Parameter value MSB Parameter value LSB

0 0x00 MSByte of parameter
ID 0

LSByte of parameter
ID 0

1 0x00 MSByte of parameter
ID 1

LSByte of parameter
ID 1

…

255 0x00 MSByte of parameter
ID 255

LSByte of parameter
ID 255

For unused parameter IDs and for parameters of the type “func” the data 0x0000 will be returned.

ID 84 - Get Event Scope

The parameter “Get Event Scope” (ID 84) is used to read out event scope signal data from the DPP3.

Each scope contains 8192 signal values with a width of 3 byte each. The response consists only of the

signal data (no header with parameter ID) and the size therefore is 8192 x 3 byte = 24576 byte. The

first byte of the data is the LSByte of the first signal value and the last transferred byte is the MSByte

of the last signal value.

ID 91 – Delete Firmware

The Parameter “Delete Firmware” (ID 92) deletes the so-called update image of the DPP firmware

(see 3.1 Firmware memory concept). The syntax for requests and the structure of responses equal

standard parameter. However, the time needed for internal processing of the request is very high

(typically 30s, maximum 90s).

 Version 1.0

8

ID 93 - Read Firmware Section

The parameter “Read Firmware Section” (ID 93) is used to read out the update image of the FPGA

firmware. Stacked data frames are not permitted with this parameter. The parameter must be

transmitted individually, otherwise a status-code 0x08 (see: 1.3.1 Standard structure of responses)

will be returned. The FPGA firmware consist of 4096 sections (section number 0 to 4095) with a

length of 1024 byte each. In order to read a firmware section, a request with standard syntax is sent:

Parameter ID Command Section number

93 0x00
(irrelevant)

Section number MSB Section number LSB

The response has a total length of 1028 byte, in which 4 bytes are a header and 1024 bytes are

firmware data:

Parameter ID Status code Section number Firmware data

93 Status code Section
number MSB

Section
number LSB

Frist data
byte of
firmware

… 1024th data
byte of
firmware

ID 127 - Force EOL

The parameter “Force EOL” (ID 127) is only used internally in the DPP3 for controlling the

communication process. There is no relevant function of this parameter for the user. No response

will be sent by the DPP3 if this parameter is called by the host.

1.4. Example
In this example the application data for a simple measurement process will be shown.

1.4.1. Configuration of the DPP3:
First, the parameter values of the DPP3 are set to desired settings for a certain application.

Commonly set parameters are for example:

Slowfilter Peaking Time

“Slowfilter Peaking Time” (ID 36) is chosen depending on the count rate as well as on desired energy

resolution and X-ray pulse throughput. In this example the peaking time will be set to 100ns.

According to the parameter overview sheet this corresponds to a parameter value of 100ns/12.5ns =

8. Therefore, we write the value of 8 to the parameter ID 36. Since “Slowfilter Peaking Time” (ID 36)

has the standard request syntax, a 4-byte data frame is needed:

36 1 0 8

Since “Slowfilter Peaking Time” (ID 36) has the standard response syntax, a 4-byte data frame will be

received from the device:

36 0 0 8

The second byte indicates the status (see 1.3.1 Standard structure of responses). The user should

verify that a 0 is returned, which means the request was processed successfully. In this case the

peaking time has been set to 100ns.

 Version 1.0

9

Fastfilter Trigger Threshold

“Fastfilter Trigger Threshold” (ID 38) is chosen depending on the present electronic noise in the

system and on the desired performance at low X-ray energies. A typically used value might be 80.

Therefore, we write the value of 80 to the parameter ID 38. Since “Fastfilter Trigger Threshold” (ID

38) has the standard request syntax, a 4-byte data frame is needed:

38 1 0 80

Since “Fastfilter Trigger Threshold” (ID 38) has the standard response syntax, a 4-byte data frame will

be received from the device:

38 0 0 80

The second byte indicates the status 0, which means the request was processed successfully. The

trigger threshold of the fastfilter was set to 80.

Run Stop Condition

“Run Stop Condition Type” (ID 2), “Run Stop Condition Value Low” (ID 3), “Run Stop Condition Value

High” (ID 4) are chosen depending on how long the measurement of the DPP should run. In this

example we will configure the DPP3 to stop the measurement after 120s of realtime. Therefore, we

write the value of 2 to the parameter ID 2 (stop at fixed realtime). According to the parameter

overview sheet 120s corresponds to a parameter value of 120s/10µs = 12000000 = 0x00B7 1B00.

Therefore, we write the value 0x1B00 to the parameter ID 3 and the value 0x00B7 to the parameter

ID 4. Since all three parameters use the standard request syntax, for each a 4-byte data frame is

needed. The three data frames can either be transmitted individually (each with a transmission with

4-byte application data) or in one transmission (one transmission with 12 byte):

2 1 0 2

3 1 0x1B 0x00

4 1 0x00 0xB7

Since all three parameters have the standard response syntax, a 4-byte data frame will be received

from the device for each request

2 0 0 2

3 0 0x1B 0x00

4 0 0x00 0xB7

The second byte of each data frames indicates the status 0, which means the request was processed

successfully. The stop condition was set to 120s fixed realtime.

1.4.2. Start of the run
After all parameter values has been set to desired values, the measurement run can be started. This

is done using the parameter “Run Start” (ID 0). According to the parameter overview sheet a value of

0 in the request deletes existing MCA data (new run), while a value of 1 adds new data to the existing

MCA data (resume run). In this example we delete existing MCA data and therefore set the data

bytes to 0. The parameter type is “func” and therefore the command byte can be chosen arbitrary.

Since “Run Start” (ID 0) has the standard request syntax, a 4-byte data frame is needed:

0 0 0 0

Since “Run Start” (ID 0) uses the standard response syntax, a 4-byte data frame will be received from

the device:

0 0 0 0

The second byte indicates the status 0, which means the request was processed successfully. The

measurement now runs on the DPP3.

 Version 1.0

10

1.4.3. Read run status
While the measurement is running on the DPP, most users want to get status information regarding

the run. Typically, the minimum needed information is whether the run is still active or not. If only

this information is required the parameter “Run Status” (ID 5) can be used. Since “Run Status” (ID 5)

uses the standard response syntax, a 4-byte data frame is required:

5 0 0 0

Since “Run Status” (ID 5) uses the standard response syntax, a 4-byte data frame will be received

from the device:

5 0 0 X

The second byte indicates the status 0, which means the request was processed successfully. X

represents the run status acquired from the device. X=1 means the run is still active, while X=0

indicates that no run is active (e.g., stop condition has been met or stop run command was received).

In case the user wants to read more status information (e.g., count rates or current realtime) the

parameter “Run Statistics” (ID 18) should be used instead. With this parameter not only the run

status but also further statistics can be read. Since “Run Statistics” (ID 18) uses the standard request

syntax, a 4-byte data frame is needed:

18 0 0 0

The response for “Runtime Statistics Read” (ID 18) has a special syntax described above (13 x 4 byte)

with the following structure:

5 0 0 X

6 0 MSByte of “Realtime
Low”

LSByte of “Realtime
Low”

7 0 MSByte of “Run
Realtime High”

LSByte of “Run
Realtime High”

8 0 MSByte of “Run
Livetime Low”

LSByte of “Run
Livetime Low”

9 0 MSByte of “Run
Livetime High”

LSByte of “Run
Livetime High”

10 0 MSByte of “Run
Output Counts Low”

LSByte of “Run Output
Counts Low”

11 0 MSByte of “Run
Output Counts High”

LSByte of “Run Output
Counts High”

12 0 MSByte of “Run Input
Counts Low”

LSByte of “Run Input
Counts Low”

13 0 MSByte of “Run Input
Counts High”

LSByte of “Run Input
Counts High”

14 0 MSByte of “Run
Output Count Rate
Low”

LSByte of “Run Output
Count Rate Low”

15 0 MSByte of “Run
Output Count Rate
High”

LSByte of “Run Output
Count Rate High”

16 0 MSByte of “Run Input
Count Rate Low”

LSByte of “Run Input
Count Rate Low”

17 0 MSByte in „Output
Count Rate High”

LSByte in „Output
Count Rate High”

 Version 1.0

11

X represents the run status acquired from the device. X=1 means the run is still active, while X=0

indicates that no run is active (e.g., stop condition has been met or stop run command was received).

1.4.4. Read MCA data:
After completion of the run or during a running acquisition MCA data can be read out. For this

purpose, the parameter “MCA read” (ID 19) is used. The request equals standard syntax with a 4-

byte data frame:

19 0 0 0

The parameter “MCA Read” (ID 19) has a special syntax described above consisting just of the MCA

data (no header). The returned data size is determined by the current settings of “MCA Number of

Bins” (ID 20) and “MCA Bytes per Bin” (ID 21). The counts of each bin are transferred with the LSByte

first. Transmission begins with bin 0.

Example: Parameter ID 20 „MCA Number of Bins” is set to 13 and parameter ID 21 „MCA Bytes per

Bin” is set to 2. “MCA Read” returns 2^13 x 2 byte = 8192 x 2 byte = 16384 byte. First byte of the data

is the LSByte of Bin 0 and the last transferred byte is the MSByte of bin 8191:

LSByte of
bin 0

MSByte of
bin 0

LSByte of
bin 1

MSByte of
bin 1

… LSByte of
bin 8191

MSByte of
bin 8191

 Version 1.0

12

2. DPP3 user data concept
In the following the internal management of parameter values in the DPP3 will be described.

2.1. Parameter values in the working copy
The DPP3 is configured by the values of parameters. This applies not only to the pulse processing

functionality (e.g., peaking times) but also to system information data (e.g., firmware version or

board temperature), communication settings (e.g., network IP address) or process control (e.g., start

a run). A unique number (“Parameter ID”) between 0 and 255 is assigned to each parameter of the

DPP3. Currently not all of the 256 possible IDs are used. For each parameter ID a 2-byte memory area

is reserved in the FPGA of the DPP3. The parameter memory in the FPGA therefore has a size of 256 x

2 byte. Since all internal functions of the DPP (e.g., calculation of digital filters, network interface, …)

use this parameter memory is referred to as working copy in the following. Parameter values of the

working copy can be read out and manipulated using the communication interfaces (see: 1. DPP3

command set).

2.2. Non-volatile parameter values
Since the working copy is stored in volatile memory inside the FPGA, the settings are lost at every

power cycle. In order to save settings an additional non-volatile memory is included in the DPP3. This

memory unit is referred to as “user data memory”. The user data memory can exchange data with

the FPGA over a serial interface on the DPP3.

The user data memory contains two complete sets of parameters (each 256 x 2 byte):

• Parameter set 0 is referred to as default parameter set. This parameter set will be written by

KETEK during the production process. The user can load this parameter set but he cannot

overwrite the set. The default parameter set is meant to be a recovery option in case a faulty

parameter set was defined by the user.

• Parameter set 1 is referred to as user parameter set. This parameter set will be written by

KETEK during the production process equally to the default parameter set. The user can load

this parameter set and is also able to override saved values. The user parameter set is

designed to allow the user to store preferred settings non-volatile.

The user is not able to directly access the user data memory. Setting parameter values using the

command set only effects the working copy. For utilization of the user data memory the parameters

“Parameter Set Load” (ID 64) and “Parameter Set Save” (ID 65) are introduced. These parameters

have the following functions:

• “Parameter Set Load” (ID 64): The current working copy is overwritten by the parameter

values stored in the loaded parameter set. When requesting “Parameter Set Load” (ID 64)

the data bytes can either be 0 in order to load the default parameter set into the working

copy or 1 in order to load the user parameter set into the working copy.

• “Parameter Set Save” (ID 64): The current working copy is stored in the parameter set. When

requesting “Parameter Set Save” (ID 64) the data bytes have to be 1 since only the user

parameter set of the user data memory can be overwritten. Requesting “Parameter Set

Save” (ID 64) with data bytes of 0 will lead to an error code.

The following diagram schematically shows the organization of parameters described above:

 Version 1.0

13

When the DPP3 is powered on the user parameter set will be loaded into the working copy. In this

way the last settings saved by the user are available after each power cycle. Changing parameter

values using the communication interfaces only affects the working copy. The changes will be applied

to the internal functions of the DPP3 immediately though. However, as long as “Parameter Set Save”

(ID 64) is not called, the changes are only saved volatile and will be lost after the next power cycle. If

the user wishes to keep the changes “Parameter Set Save” (ID 64) has to be called. In this case the

parameter set will be preserved after a power cycle.

2.3. Recovery of the DPP3 using the default-button
In case the user saved a faulty or unknown parameter set into the user parameter set, the default-

button of the interface board can be used for recovery. In order to activate the recovery, the user

has to switch off the power of the DPP3 first. Then push the recovery button while powering the

DPP3 and keep that button pushed at least for another 3s. During the recovery process the user

parameter set (1) is overwritten with the values of the default parameter set (0). Therefore, after the

recovery the user parameter set (1) is identical with the default parameter set (0) and the user can

continue with default settings.

As an alternative for pushing the button on the interface board provided by KETEK, the user can pull

the pin 37 “FPGA_DFLT/MCU_REQFBL” of the VICO-DV 3.0 connector to high (3.3V). This is useful in

case a custom interface board is used.

Working

copy

256 x 2 byte

Communi-

cation

interfaces:

Ethernet,

USB, SPI

Internal

functions of

the DPP3

Parameter

set 0

(“default”)

256 x 2 byte

Read values

Read and write parameter

values

Parameter

set 1

(“user”)

256 x 2 byte

Load and save

parameter set

Load

parameter set

Load = Overwrite current

working copy with data

from parameter set

Save = Write data of

current working copy into

the parameter set

 Version 1.0

14

3. Update of the DPP firmware
The DPP3 provides the opportunity to update the DPP firmware using any supported communication

interface (USB, Ethernet, SPI). This feature will be described in the following.

3.1. Firmware memory concept
The firmware memory of the DPP3 is divided into two separate areas. Each memory area is capable

of saving one firmware file. The firmware file in the first area will be called “golden image” while the

firmware file in the second area will be called “update image”:

• The golden image is stored into the firmware memory during the production process at

KETEK using a programming interface. The latest DPP firmware version at the time of

production will be used as golden image. The golden image cannot be modified using

communication interfaces and can only be changed by KETEK using the programming

interface.

• No update image will be stored during the production process at KETEK. Therefore, this

memory area is empty in delivery state. Using the communication interfaces firmware data

can be written into or read out of this memory area. Also, the update image can be deleted

using the DPP3 command set.

When the DPP3 is powered on the first step is trying to boot the update image. Therefore, the

update image will be loaded into the FPGA and boot process is started. In case the boot fails (e.g., no

update image is stored, update image was corrupted) the DPP3 will fall back to the golden image. In

this case the golden image will now be loaded into the FPGA and the boot process is started again.

Since the golden image cannot be modified in field, this firmware will always be bootable.

Using this firmware memory concept, it is assured that the DPP3 still can be used after a failed

update of the firmware (e.g., power or communication loss during update). In this case the golden

image is booted and the user can repeat the firmware update.

3.2. Tools for updating the firmware
In order to update the firmware of the DPP3 via USB or via Ethernet KETEK provides the software

tool “VICOUpdate”. VICOUpdate can be controlled using a graphical user interface or a command-

line shell. With VICOUpdate a safe firmware update can be done with few clicks or commands.

VICOUpdate is based on the API “VICOLib”. Further information can be found in the corresponding

documentation.

If the firmware update process should be integrated in a custom application using VICOLib the API

functions “deleteFirmware()”, “readFirmwareSection()” and “writeFirmwareSection()” can be used.

More information on how to build a safe update process using these functions are available on

request.

Furthermore, updating the firmware using low-level communication (USB/Ethernet without VICOLib

or in case of SPI communication) is supported. This process will be described in the following.

3.3. Updating the firmware using low-level communication
In the following the process for updating the DPP firmware using low-level communication will be

described. Information regarding the used parameters can also be found in the section 1 DPP3

command set. The necessary steps are:

3.3.1. Open the firmware file
The firmware file will be delivered as hex-file and the firmware version is noted in the file name (e.g.,

“esw-xv3.0-fpga-0.3.2.0.hex”) for version 0.3.2.0. The file contains the firmware data in ASCII-coded

 Version 1.0

15

format and can be opened using common text editors. Within the hex-file 2192012 bytes of data can

be found. However, the area in the firmware memory has a size of 4194304 bytes due to the given

segmentation of the memory device and due possibly larger firmware file in future products.

Therefore, the host software has to append 2002292 bytes (4194304 bytes - 2192012 bytes) of data

to the firmware data read from the hex-file. The appended data should be all 0xFF. In this way the

final firmware data with a length of 4194304 bytes are generated: The first 2192012 bytes contain

the content of the hex-file and the last 2002292 bytes are all 0xFF. This final file can be transmitted

to the device in the following.

3.3.2. Segmentation of the firmware
The final firmware data with a length of 4194304 bytes has to be divided into 4096 sections with a

length of 1024 bytes each. Therefore, the host software has to extract blocks with 1024 bytes from

the firmware data successively. The first block is referred to as section number 0 and the last block

will be noted as section 4095.

3.3.3. Unlock update feature on the DPP3
In order to prevent the user from unintended changes on the firmware by sending certain requests

by accident, the relevant parameters have to be unlocked first. To gain access to the firmware

update feature the user first has to write a value of 18007 (0x4657) to the parameter “Service Code

Low” (ID 94) and a value of 21840 (0x5550) to the parameter “Service Code High” (ID 95). Both

parameters use the standard request syntax and the low-level data frames therefore are:

Parameter ID 94 Command: Write MSB of 18007 LSB of 18007

94 (= 0x5E) 0x01 0x46 0x57

and

Parameter ID 95 Command: Write MSB of 21840 LSB of 21840

95 (= 0x5F) 0x01 0x55 0x50

Both parameters use the standard response syntax and the received low-level data frames therefore

are:

Parameter ID 94 Status: Success MSB of 18007 LSB of 18007

94 (= 0x5E) 0x00 0x46 0x57

and

Parameter-ID 95 Status: Success MSB of 21840 LSB of 21840

95 (= 0x5F) 0x00 0x55 0x50

Afterwards access to the parameters “Delete Firmware” (ID 91), “Write Firmware Section” (ID 92),

and “Read Firmware Section” (ID 93) is granted. The access is lost when the device is power cycled or

if any other data are written to “Service Code Low” (ID 94) and “Service Code High” (ID 95).

3.3.4. Delete the current update image on the DPP3
Before a new firmware can be transferred to the DPP the current update image in the firmware

memory of the DPP3 has to be deleted. This step is mandatory since only erased parts of the memory

device can be written. In order to delete the update image on the DPP3 the parameter “Delete

 Version 1.0

16

Firmware” (ID 91) has to be called. The parameter uses standard request syntax and the low-level

data frame to delete the firmware therefore is:

Parameter ID 91 Command:
Irrelevant

MSB: Irrelevant LSB: Irrelevant

91 (= 0x5B) 0x00 0x00 0x00

The DPP3 then erases the update image in firmware memory. After completion of this process

(typically 30s, maximum 90s) the response in standard syntax will be returned:

Parameter-ID 91 Status: Success MSB: Irrelevant LSB: Irrelevant

91 (= 0x5B) 0x00 0x00 0x00

This indicates that the update image memory area was erased successfully.

3.3.5. Write firmware sections to the DPP3 and verify data
After the memory area of update image has been erased the new firmware can be transferred to the

DPP3. In order to ensure a safe update process, we recommend to read back and verify each

firmware section after it has been written.

The transfer of the firmware must to be started at the highest section number 4095. Trying to write

any other section number than 4095 after the firmware has been deleted will result in an error code

0x02 (see: 1.3.1 Standard structure of responses) In order to transfer a firmware section, the

parameter “Write Firmware Section” (ID 92) is used. This parameter has a special request syntax

(see: 1.2.2 Special structure of requests) with a length of 1028 bytes. The low-level data frame used

to write the section 4095 looks like this:

Parameter
ID 92

Command:
Irrelevant

Section
number:
MSB of 4095

Section
number:
LSB of
4095

1st data
byte of
firmware
section 4095

… 1024th data
byte of
firmware
section 4095

92 (= 0x5C) 0x01 0x0F 0xFF ?? … ??

The DPP3 transfers the 1024 bytes of firmware data into the specified section 4095 of the firmware

memory. After completion of the write process (typically 1ms) the response in standard syntax will

be returned:

Parameter ID 92 Status: Success Section number:
MSB of 4095

Section number: LSB
of 4095

92 (= 0x5C) 0x00 0x0F 0xFF

As a next step the written data should be verified. Therefore, the just written firmware section 4095

is read out using the parameter “Read Firmware Section” (ID 93). The parameter uses standard

request syntax and the low-level data frame to delete the firmware therefore is:

Parameter ID 93 Command: Irrelevant Section number:
MSB of 4095

Section number: LSB
of 4095

93 (= 0x5B) 0x00 0x0F 0xFF

 Version 1.0

17

The DPP3 now reads out the data from the specified section 4095 of the firmware memory. The

response has a special syntax with a length of 1028 bytes (see: 1.3.2 Special structure of responses)

using the following structure:

Parameter
ID 93

Status:
Success

Section
number:
MSB of 4095

Section
number:
LSB of 4095

1st data byte
of firmware
section 4095

… 1024th data
byte of
firmware
section 4095

93 (= 0x5B) 0x00 0x0F 0xFF ?? … ??

Now the user should compare the 1024 bytes of firmware data read from the DPP3 with the

previously transferred 1024 bytes of firmware data in order to ensure correct data transmission. In

case all data bytes are equal, the user can continue to write and verify the next smaller section

number (here section number 4094). The process is continued until section number 0 has been

written and verified by the user. Afterwards the firmware file has been written into the firmware

memory.

In case the verification step fails at any section number (read data are not equal to previously written

data), the user should stop the update process and erase the firmware on the DPP3 since it might be

corrupted. It is not possible to write just the corrupted firmware section again, since only erased

memory parts can be written.

3.3.6. Reboot of the DPP3
So far in the update process the firmware file has been transferred into the firmware memory of the

DPP3. This however does not affect the firmware currently loaded in the FPGA. This firmware was

booted when the DPP3 was powered and will not be modified during the update process. In order to

use the previously transferred firmware, a power cycle of the DPP3 is necessary. Afterwards the boot

process described in Firmware memory concept will be started and the DPP3 first tries to boot the

update image. If this is successful the previously transferred firmware will be used and will also be

booted after following power cycles. In case the update image is not bootable, the DPP3 falls back to

the golden image and the user can repeat the update process. In order to ensure that the update

image was booted successfully we recommend to read out the firmware version after the power

cycle using the parameter IDs 66 to 69 and compare the firmware version to the one noted in the

hex-filename.

