asynDriver

asynDriver

Table of Contents

asynDriver: EPICS Driver Support 1
(018015 0 G0 118 4101011 ¢ YR TRTTT RSO PPRRRRR 1
LICENSE AGIEOIMEIL. ..eeuveeuttetietiettetietterttesttesteestteateeabeesbtesbeesbeesbee bt esbeanbeesbeesbeesbeeabeaasteabeesbeeshtesueesatenaeesbeens 1
[000) 1115 111 NN TR 1
PUIDOSE ettt et ettt e b et e bt e s bt e sa b e e s bt e e bt e b et e bt e e sab e e sabe e ea b e e eabee e baeenbbeenabeesateas 3
T 72110 TR 4
ACKNOWIEAGIMENLS ...+ ceutteutiettetteitteet ettt ettt et e bt e st esb e e s bt e sbeesbeesbeesbeesbeesbeesbeesbeesbeeaseesbeesbeesheesueesaeenneesbeens 5
OVEIVIEW OF ASYIIDIIVEE ..ettetietietieteeet ettt ettt ettt e bt et e et e e s bt e bt e bt e bt e be e be e be e bt ebe e bt ebeenbeeeeenne 6

| DTS R 1L L0 0 IR 6
StaANdATd INEETEACES. c.vvvvveeeieeieiieeee ettt ettt e e e e ettt e e e e e e e e aaa e e e e eeesesbtaeeeeessessaaaeeeessenneeeees 8
(€10 115 W (ol 1 10=3 8 1o PR 8
ASYIMIANAZEL . ..cevveeiteeeitie ettt ettt ettt e st e st e et e ettt ettt e bt e e sabeesabeesabeesabeeeabaeenbteesabeesabeesabeesabae e baeenbaeenaee 9
Multiple Device vs Single Device POrt DIIVELS. ... cocueerierienieiieniieriiesieesieesie et 12
CoNNECtion MANAZEIMNEIIEeeveetteteeteetteteeteeteesteestee bt e bt ebeesbeete e bee bt ebeenbeenseenseenseebeenbeenseenseensean 13
Protecting a Thread from BIOCKING.cveerveertientieiieiiesieesitesit ettt ettt ettt e sbe e 13
POIETRICAC. ..ottt ettt e bt e s bt e s bt e s abeesabe e e bt e e nbbeesabeesabeesabeesabaeenbees 13
OVEIVIEW OF QUETIIIG. .. e euveeutieutieieeteete ettt et e bt e bt e bt e bt e bt e be e te e be e bt eabeembeenbeenteenbeebeenbeenbeenseeneean 14
ST Ao il @) o3 21 () N U USSR 15
) I LR Y U721 o) o RO PRRRRN 15
Requesting aCCEeSS £0 8 POT....eeutetietierieenteenttertterttertte st e steesteesbeesbeesbee s bt e beesbee bt e bt e bt enbeesbeesbeenbeenbeenses 15
queueRequest - FIOW Of CONIOL...coutitiiitieiieiieeee ettt ettt et an 15
asynDriver Structures and INEETTACES.eerueeruieitieiiete ettt ettt et ettt an 17
ASYTISTALUS ..o .vteeeteeitee ettt ettt ettt ettt e sttt e st ee ettt eab et e bb e e bt e esbteesabeesabeeeabeeeabeeeabeeesabeesabeesabeesabaeeabaeennbeenabeens 18
P 0] B (o7c) o) 5 0] 1 VORI 18
P 010101511 1) 24 (0] 5 L /SO OO OO USROS 19
ASYTIUTSOI. c.. e enttteetteeitee ettt ettt ettt ettt e sttt e satee ettt ettt e be e e bt e enbbeesabee s a bt e e b et e be e e bt e e sabeesabeeeabeeeabeeeabaeenateenabeens 19
ASYIINEETTACE ¢ e ettt ettt ettt et ettt et e e bt e bt e bt e bt et e et e e bt e beebe e beenbeentean 20
ASYIMIANAZEL . ..ceueveeeieeeiiee ettt ettt ettt ettt e st ee ettt ettt e bt e ettt esbteesabeesabeeeabeeeabeeeabaeesabeesabeesabeesabeeenbaeensbeenareens 21
ASYNCOIMITION - nteeneteeeutee ettt ettt ettt e sttt esuteesabeeeabeeebaeebeeenbbeesabeesabeesabeeeabaeenbaeenabeesabeesabeesabeesnbaeensaeenaneens 27
asynCommONSYNCTOL.....coouiiiiiiiiieiieeeee ettt ettt st e et eebe e e bt e e sabeesabeesabeesabeeeabeeensbeenabeens 28
ASYIIDITVISOL: .ottt ettt ettt ettt ettt ettt ettt et ettt e sbteesabeesabeesabeesabeeeabbeesabeesabeesabeeeabeeenbaeensbeenareens 28
ASYNLLOCKPOTEINOLIEY .. .teeuteeuteettett ettt ettt et ettt et et e bt e bt e bt et e et e ebeebeenbeeabeeneeeneean 28
FiTA 010 0] 5 (o) 1 WU OO OO OO 29
B B TeTo 61103 2 o)=Y PSRRI 29
ASYIITTACE . e evteeiteeeitee ettt ettt ettt bt e e sbt e s bt e s bt e st e e e beeeabteesabeesabeesabeesabeeeabeeensbeenabeens 31
Standard Message Based INtEIfaCES ... cooveeiuiiriiiiieiieieee ettt ettt et e 33
ASYTIOICTEE e euvtteeteeuteeeuiee ettt ettt ettt e sttt esateeeabeeeabeeeabee e beeenbteesabeesabeeeabeeeabeeeabeeenabeesabeesabeesabeeeabaeensbeenabeens 33
ASYNOCIEESYNICTO ...ttt ettt st e sttt ettt e bt e e sabeesabeesabeesabeeenbaeensaeenareens 35
End Of STING SUPDOLEeeteetiittetiet ettt ettt ettt e bt e bt e bt e s bt e s bt e sbeesbe e bt e bt esbeesbeesbeenbeenbeenees 37
Standard Register Based INtEITACES. ... uevveerteertiitieiieteete ettt ettt ettt et ettt an 37
g 0800 6 18 To1 o) o RO PRRRRN 37
addr - What does it mean for register based interfaces?........ccceerueereeneesieiieieeeeeee e 38
20 0110) (S B A7) £ OSSR 38
ASYNINEXX (XX=32 OF O4)...eeeieiieiieieeie ettt ettt ettt et et e bt e bt e bt e bt eabe e bt enteebeebeenbeenbeenseeneean 38
asynIntXXSynclO (XX=32 OF O4)....cccueerueeuiaieeieenieenteeste et et et e bt e bt e bt e bt ebe e bt enbeebeebeenbeeabeenseeneeas 40
ASYNUINEZ2DIGZIEAL 1 .veenveetietieteee ettt ettt ettt et et e bt et e et e et e et e e bt ebeeabeenbeenseeneean 40
asynUInt32Digital SYNCIO. ... ccuieiiiiiitieie ettt ettt et ettt et e et e bt e bt et e bt eabeebeenteeneean 42

asynDriver

Table of Contents

asynDriver: EPICS Driver Support

ASYNFIOAOASYIICTO. ...ttt ettt ettt et et e bt e bt e bt et e et e ebe e beenbeenbeenteentean 44
asynX XX Array (XXX=Int8. Int16. Int32. Int64. Float32 or Floath4).........ccceeieinieeniienieeieeieeieeee 45
ASYNXXXATTAYSYICTOttt ettt ettt et et e bt e bt e bt e bt ebeebeebeenbeenbeenseeneean 46
ASYIIEIIUINL ¢ttt ettt e bt e bt e bt e bt e bt e bt e bt e b e e bt et e et e e te e bt e beenbeenbeenteentean 46
ASYNENUMSYICTOL ...ceiiiiiiiiieiieete ettt ettt sttt ettt e bt e e sabeesabeesabeesabeeeabeeensbeenaneens 48
PN [15) 115 8 (o] a0 Y 11113 NN OO OO U PP URURRPRRIS 49
asynGenericPOINtEISYNCTO.iiuiiiiiie ettt ettt ettt ettt e bt et e e enbeeneean 50
asynStandardINterfaceSBasE.cueeueertieitieiiee ettt et ettt et ettt e an 50
asynStandardINterfaces SITUCTULEeeveeteerteeteeteerte et et et et et e te et e et e e be e bt e bt et e ebeebeenbeenbeenteeneean 51
asynStandardInterfacesBase INtBITACE.eovueeueerieiiieieee ettt 52
Standard INterpOSe INLEITACES ... veeteeteetieitiete ettt ettt ettt ettt e te et et eabeeabeenteeneean 54
ASYNINEETPOSEIIOS ettt ettt et ettt e bt e bt bt ettt et e e bt e bt e b enbeenteentean 54
ASYNINEETPOSEETISIL ...ttt ettt ettt ettt ettt e et e bt e b e be et e et s 54
ASYNINEETDOSECOME 1.t eutteutientteteet et et et et et et e bt e bt e bt e bt et e eabeeabe e beeabeenbeembeenbeenteenteenbeenbeenbeenbeentean 55
ASYNINEETPOSEIIEIAY. ettt ettt ettt ettt et et e bt e bt e bt et et et e e be e be et e e beenteentean 55
ASYNINETPOSEECHIQ. 1. ettt ettt ettt ettt e be et ettt s 55
Generic Device Support for EPICS TECOTAS . .. coutirtiiitieiieiieieetee ettt 55
asynManager interrupts and EPICS device SUDPOLL.....cccueerveerieerieeiieeieesieesieeie e 56
Initial values Of QUEPUL TECOTAS. ..evtetietieriieitieit ettt ettt ettt et et e sb e e bt e bt e bt e bt e sbeesbeesbeenbeenees 57
Enum values for bi. bo. mbbi. and mbDO TECOIAS........oeevuuuriiiiiieeiieiieee e e 57
Callback updates fOr OUEPUL TECOTAS.eeveeteeteeieeiteeteeie et ettt et et et ettt e bt et e e bt ebeebeebeeneeeneean 58
Buffering of driver CallDaCKSooueertierieiieieitiete ettt ettt ettt et 58
B0 A TS 7201 010 TSRS 58
ASYNINE32 dEVICE SUDPPOIE.+eeuveeuteeteeteeteesteeteeteetee bt e bt e bt e bt ebeebeebe e beebeenbeenbeenbeenseenbeenbeenbeenbeenseeneean 58
ASYNINEOA dEVICE SUDPOIE - .eeuveeuteeteeteeteeteeteeteetee bt este e bt e bt ebeenbe e beebe e bt eabeenbeenseenseenseebeenbeenbeenseensean 61
asynIntXXXArray device support (XXX=8. 16. 32, OF 64)......cereeiiriieiieieeieeieeieeie e 62
asynXXXTimeSeries device support (XXX=Int32. Int64. or FIoathi4)........cecveeiveeieeiienieieeieeieeneen 62
asynUInt32Digital deVICE SUPDPOLL....cccueeruieteeieeieeitteiteesteete et et eteeste e bt ebeeabeebeebeebeebeenbeebeenteeneean 62
ASYNFI0At64 dEVICE SUDPOIL ..ccuveeutteutietietietieteente et este et e bt ebeebe e bt e beeabeebeenbeenseenteenbeebeenbeenbeenseeneean 65
asynFloatXXXArray device support (XXX=32 OF 64)......ccccereerieerieniienieesieeieeie e 65
ASYNOCLEL ABVICE SUPDOIL....veeutietteteeteertteteeteerteeste e bt e bt e bt ebeebeebeebeebeebeanbeenbeenseenbeenbeenbeenbeenseeneean 65
RECOIA AIATINIS ...eeeiiiieiiieiie ettt e e e ettt e e e e e et e e e e e e eaaaaeeeeeesessasaeeeeesssnstaaeeseessnnnnaneeeeessans 67
asynRecord: Generic EPICS RecOrd SUPDOIL......ccueerteertiiriieiieiiesieeieesie ettt ettt 67
ASYIIGDID . ¢ttt ettt ettt ettt e e bt e bt et e et e e bt e bt e bt e bt e bt e bt e te e bt e beeabeenbeenteentean 68
ASYNGDIDDIIIVEILN. ¢ttt et ettt et ettt e et e bt et e et e et s 68
FiT 01615 1o FO OO OO U ORI 70
ASYIIGDIDPOTE ...ttt ettt ettt et e bt e bt e bt e bt et e et e e bt e be et e et enteeneean 70
2oy A B W A=) o PR 71
| o721 TS P21 B) o AP RRRRRN 71
TCP/IP OF UDP/IP POTIL....ccceiieeeeiieeeeeeeeeeeeeeeeeeetee e e e eeeesate e e e e e eeeaaaeeeeeeesessasaaeeessssssstaaeeseessnnnaseeeeessnnns 73
O o7 0 SN TS = SRR 74
Y€ 1 SRR 75
50010 €15 Lo SRS 76
Green Springs TPABE.........oo ittt ettt ettt ettt et e b e e bt ettt et e et e be e b e e beenbeeneean 77
National Instruments GPIB-TOT4D........uuuuiiiiiiiiieeieee e e eeeeaee e e e e eetae e e e e s esstaaeeseessenaaaeeeeesennns 78
USB TMC (Test and Measurement Class) dIIVET.........cccuuverieeeieiieeeeeeeeeeeteeeeeeeeeeireeeeeeeseesaaeeeeeeseenns 78
| RN D) 0 o) SRS RPRRRN 80

asynDriver

Table of Contents

asynDriver: EPICS Driver Support
AdAILONAL DIIIVETS. ...coeeeeeeeeeeeeeeeeeee ettt et et e ee e et eeseeeeeeeseeeeeeseseeeeesseeesesesessssssssssssasssasnssssnnnnns

Example Client...
Test Applications

EESTCOMIMECTADD. - e evveeeuteeeittentteentte e sttt enitteebeeebeeebte ettt enbteesabeesabeesabeeeabeeenbteesabeesabeesabeesabeeenbaeensseenareens

testEpicsApp

B STEITOTS ADI e evteeiteeeutee ettt ettt ettt ettt et e bt e bt ettt e s bt e e sabeesab e e ettt e be e e bt e e sabeesabeeeabeeeabeeeabeeenabeenabeens

Install and Build..

asynDriver

asynDriver: EPICS Driver Support

Release 4-37
Mark Rivers, Eric Norum, and Marty Kraimer

October 18, 2019

Other Contributers

Gasper Jansa (cosyLab) - linuxGpib support.

License Agreement

This product is available via the open source license described at the end of this document.

Contents

¢ Purpose
e Status

e Acknowledgments

e Overview of asynDriver
¢ Definitions
¢ Standard Interfaces
¢ Generic Interfaces

¢ asynManager
+ Multiple Device vs Single Device Port Drivers
¢ Connection Management
¢ Protecting a Thread from Blocking
¢ portThread
¢ Overview of Queuing
¢ Theory of Operation
¢ Initialization
¢ Requesting access to a port
¢ gueueRequest
¢ asynDriver Structures and Interfaces

¢ asynStatus
asynException

¢

¢ asynQueuePriorit
¢ asynUser

¢ asynlnterface

¢ asynManager

¢ asynCommon
¢
¢
¢
¢
¢

i

asynCommonSynclO
asynDrvUser
asynlLockPortNotify
asynOption

Trace Interface

W

F

asynDriver: EPICS Driver Support

asynDriver

¢ asynTrace
e Standard Message Based Interfaces

¢ asynOctet

¢ asynOctetSynclO

¢ End of String Support
e Standard Register Based Interfaces

¢ Introduction

¢ addr - What does it mean for register based interfaces?
S
asynIntXX (XX=32 or 64
asynInt32SynclO
asynInt64
asynInt64SynclO
asynUInt32Digital
asynUInt32DigitalSynclO
asynFloat64
asynFloat64SynclO
asynXXXArray (XXX=Int8. Int16, Int32. Int64. Float32 or Float64
asynXXXArraySynclO
asynEnum
asynEnumSynclO

¢ asynGenericPointer
¢ asynGenericPointerSynclO
¢ asynStandardInterfacesBase
+ asynStandardInterfaces Structure
¢ asynStandardInterfacesBase Interface
e Standard Interpose Interfaces
¢ asynlnterposeEos
¢ asynlnterposeFlush
¢ asynlnterposeCom
¢ asynlnterposeDelay
¢ asynlnterposeEcho
e Generic Device Support for EPICS records
¢ asynManager interrupts and EPICS device support
¢ Initial values of output records
¢ Enum values for bi. bo. mbbi. and mbbo records
¢ Callback updates for output records
¢ Buffering of driver callbacks
¢ Time Stamps
¢ asynInt32 device support
¢ asynInt64 device support
¢ asynIntXXXArray device support (XXX=8. 16. 32, or 64)
¢ asynXXXTimeSeries device support (XXX=Int32. Int64. or Float64)
¢ asynUInt32Digital device support
¢ asynFloat64 device support
¢ asynFloatXXXArray device support (XXX=32 or 64)

¢ asynOctet device support
¢ Record alarms

e asynRecord: Generic Record Support
® asynGpib

¢ asynGpibDriver.h

i

ﬁTW"”"

Contents

asynDriver

+ asynGpib
¢ asynGpibPort
e Port Drivers

¢ Local Serial Port
¢ TCP/IP or UDP/IP Port
¢ TCP/IP or UDP/IP Server
¢ VXI-11
¢ Linux-Gpib
¢ Green Springs IP488
+ National Instruments GPIB-1014D
¢ USB TMC (Test and Measurement Class)
¢ FTDI
¢ Additonal Drivers
e asynPortDriver C++ base class
e asynPortClient C++ classes
¢ Diagnostic Aids
4 iocsh Commands
e Example Client
e Test Applications

¢ testApp

¢ testArrayRingBufferApp

¢ testAsynPortClientApp

¢ testAsynPortDriverApp

¢ testBroadcastApp

¢ testConnectApp

¢ testEpicsApp

¢ testErrorsApp

¢ testGpibApp

¢ testGpibSerial App

¢ testIPServerApp

¢ testManagerApp

¢ testOutputCallbackApp

¢ testOutputReadbackApp

¢ testUsbtmcApp
e Install and Build

¢ Install and Build asynDriver

¢ Using asynDriver Components with an EPICS iocCore Application
e License Agreement

Purpose

asynDriver is a general purpose facility for interfacing device specific code to low level drivers. asynDriver
allows non-blocking device support that works with both blocking and non-blocking drivers.

A primary target for asynDriver is EPICS I0C device support but, other than using libCom, much of it is
independent of EPICS.

asynDriver has the following key concepts:

¢ Device support communicates with drivers via interfaces

Purpose

asynDriver

Drivers take care of the details of how to communicate with a device and implement interfaces for use by
device support. Interfaces are defined for both message and register based devices. In the past when
support was written for a new type of device, device support for standard EPICS records had to be written
in addition to the driver support. Now a driver just implements one or more of the standard interfaces.

e A port provides access to device instances

A port, which has a portName, identifies a communication path to one or more device instances. For
example a GPIB port can have up to 15 devices connected to it. An RS232 port communicates with a
single device. Drivers register a port. Device support connects to a port.

e asynManager controls access to a port

asynManager, a component of asynDriver, provides exclusive access to a driver via calls to
queueRequest, lockPort/unlockPort, and queueLockPort/queueUnlockPort. Once device support has
access, it can make an arbitrary number of calls to the driver knowing that no other support can call the
driver. Device and driver support do not need to implement queues or semaphores since asynManager
does this for them.

¢ asynTrace provides a general purpose diagnostic facility

Rules are defined for providing diagnostic messages. Provided device and driver support follow the rules,
a user can obtain several levels of diagnostic information that can be displayed on the console, written to
a file, or sent to the EPICS errlog facility.

¢ asynRecord - Generic access to an device/port

asynRecord is an EPICS record and set of associated MEDM displays that provide access to:
¢ A port or a device connected to a port

The port or port,addr can be changed dynamically. Thus with one asynRecord in an I0C, it is
possible to talk to any device that has an asyn compatible driver.

¢ asynTrace - All asynTrace options can be controlled with the asynRecord.

¢ Connection Management

Display and change connection, enable, and autoConnect state
¢ Standard interfaces

These can be used to communicate with devices. For example if a new instrument arrives that has
a serial, GPIB, or ethernet port, then it is often possible to communicate with it just by attaching
an asynRecord to it.

¢ Extensive Serial Support

asynDriver provides many facilities for communicating with RS232, RS485, GPIB, and ethernet.

Status

This version provides
¢ asynManager: the software layer between device support and drivers.

¢ asynRecord: EPICS record support that provides a generic interface to asynManager, asynCommon,
asynOctet, asynGpib, and other interfaces.

4 Status

asynDriver

¢ asynPortDriver: a C++ base class that makes it easy to write asyn drivers, with much of the boilerplate
asyn code handled in the base class methods.

¢ asynPortClient: C++ classes that makes it easy to write C++ asyn clients that communicate directly with
asyn port drivers without running an EPICS IOC.

e standard interfaces: Standard message and register based interfaces are defined. Low Level Drivers
implement standard interfaces. Device support communicates with low level drivers via standard
interfaces.

e devEpics: Generic device support for EPICS records.

¢ devGpib: EPICS device support that replaces the device support layer of the Winans/Franksen gpibCore
support.

¢ asynGpib: a replacement for the drvGpibCommon layer of the Franksen gpibCore support.

e drvAsynSerialPort: Support for devices connected to serial ports.

e drvAsynlIPPort: Support for TCP/IP and UDP/IP socket communication, including serial devices accessed
via Ethernet/Serial converter boxes.

e drvAsynlIPServerPort: Support for asyn socket servers that are accessed from remote clients. TCP/IP
sockets and UDP are supported.

® VXI-11: A replacement for the VXI-11 support of the Franksen gpibCore support.

e Linux-gpib: Support for the Linux GPIB Package library.

e gs[P488: A low level driver for the Greensprings IP488 Industry Pack module.

* nil014: A low level driver for the National Instruments VME 1014D.

e Serial Bus Support: The asynLockPortNotify interface was added to make it easier to support serial bus
drivers that use the standard serial support.

The following are some of the existing EPICS general purpose device support systems that have been converted
to use asynDriver.

e StreamDevice. This is the protocol file-based support for serial/GPIB/CAN from Dirk Zimoch.

¢ gpibCore. This is the operating-system-independent version of the Winans/Franksen GPIB support.

¢ synApps (The APS BCDA synchrotron applications). The mca, dxp, motor, Ip330, IpUnidig, DAC128V
and quadEM applications in this package have all been converted to asyn. The serial and GPIB modules
in this package are no longer needed, because the asyn record replaces them. The areaDetector module
was written to use asyn, and was the original motivation for the development of asynPortDriver.

Acknowledgments

The idea of creating asynDriver resulted from many years of experience with writing device support for serial and
GPIB devices. The following individuals have been most influential.

John Winans
John provided the original EPICS GPIB support. Databases using John's support can be used without
modification with devGpib. With small modifications, device support modules written for John's support
can be used.

Benjamin Franksen
John's support only worked on vxWorks. In addition, the driver support was implemented as a single
source file. Benjamin defined an interface between drvCommon and low level controllers and split the
code into drvGpib and the low level drivers. He also created the support for drvVxill.

Eric Norum
Eric started with Benjamin's code and converted it to use the Operating System Independent features of
EPICS 3.14.

Marty Kraimer

Acknowledgments 5

asynDriver

Marty started with Eric's version and made changes to support secondary addressing; and to replace ioctl
with code to support general bus management, universal commands, and addressed commands.

Pete Owens
Pete, for the Diamond Light Source, did a survey of several types of device/driver support packages for
serial devices. Diamond decided to use the StreamDevice support developed by Dirk Zimoch.

Dirk Zimoch
Dirk developed StreamDevice, which has a single device support model, but supports arbitrary low level
message based drivers, i.e. GPIB, serial, etc.

Jun-ichi Odagare
Jun-ichi developed NetDev, a system that provides EPICS device support for network based devices. It
has a single device support model, but provides a general framework for communicating with network
based devices.

Mark Rivers
Mark became an active developer of asynDriver soon after he started converting SynApps to use
asynDriver. He soon pushed to have asynDriver support synchronous drivers, support register based
drivers, and support interrupts. With these additions asynDriver is a framework for interfacing to a large
class of devices instead of just message based asynchronous devices.

Yevgeny A. Gusev
Yevgeny has found bugs and suggested improvements in the way asynManager handles queue timeouts
and cancels. He provides an expert and welcome set of eyes to look at difficult code!!!

Overview of asynDriver

Definitions

asynDriver is a software layer between device specific code and drivers that communicate with devices. It
supports both blocking and non-blocking communication and can be used with both register and message based
devices. asynDriver uses the following terminology:

e interface

All communication between software layers is done via interfaces. An interface definition is a C language
structure consisting entirely of function pointers. An asynDriver interface is analogous to a C++ or Java
pure virtual interface. Although the implementation is in C, the spirit is object oriented. Thus this
document uses the term "method" rather than "function pointer".

® port

A physical or logical entity which provides access to a device. A port provides access to one or more
devices.
¢ portDriver

Code that communicates with a port.
¢ portThread

If a portDriver can block, a thread is created for each port, and all I/O to the portDriver is done via this
thread.

e device

A device (instrument) connected to a port. For example a GPIB interface can have up to 15 devices
connected to it. Other ports, e.g. RS-232 serial ports, only support a single device. Whenever this

6 Overview of asynDriver

asynDriver

document uses the word device without a qualifier, it means something that is connected to a port.
e device support

Code that interacts with a device.
¢ synchronous

Support that does not voluntarily give up control of the CPU.
¢ asynchronous

Support that is not synchronous. Some examples of asynchronous operations are epicsThreadSleep,
epicsEventWait, and stdio operations. Calls to epicsMutexTake are considered to be synchronous
operations, i.e. they are permitted in synchronous support.

¢ asynDriver

The name for the support described in this manual. It is also the name of the header file that describes the
core interfaces.
¢ asynManager

An interface and the code which implements the methods for interfaces asynManager and asynTrace.
¢ asynchronous Driver

A driver that blocks while communicating with a device. Typical examples are serial, gpib, and network
based drivers.
¢ synchronous Driver

A driver that does not block while communicating with a device. Typical examples are VME register
based devices.
® Message Based Interfaces

Interfaces that use octet arrays for read/write operations.
® Register Based Interfaces

Interfaces that use integers or floats for read/write operations.
® interrupt

As implemented by asynManager, interrupt just means "I have a new value for port, address".

Synchronous/asynchronous and message/register are orthogonal concepts. For example a register based driver can
be either synchronous or asynchronous. The terminology register vs message is adapted from VXI.

Standard interfaces are defined so that device specific code can communicate with multiple port drivers. For
example if device support does all its communication via reads and writes consisting of 8 bit bytes (octets), then it
should work with all port drivers that support octet messages. If device support requires more complicated
support, then the types of ports will be more limited. Standard interfaces are also defined for drivers that accept 32
bit integers or 64 bit floats. Additional interfaces can be defined, and it is expected that additional standard
interfaces will be defined.

One or more devices can be attached to a port. For example, only one device can be attached to an RS-232 port,
but up to 15 devices can be attached to a GPIB port.

Definitions 7

asynDriver

Multiple layers can exist between device specific code and a port driver. A software layer calls interposelnterface
in order to be placed between device specific code and drivers. For more complicated protocols, additional layers
can be created. For example, GPIB support is implemented as an asynGpib interface which is called by user code,
and an asynGpibPort interface which is called by asynGpib.

A driver normally implements multiple interfaces. For example asynGpib implements asynCommon, asynOctet,
and asynGpib.

asynManager uses the Operating System Independent features of EPICS base. It is, however, independent of
record/device support. Thus, it can be used by other code, e.g. a sequence program.

Standard Interfaces
These are interfaces provided by asynManager or interfaces implemented by all or most port drivers.
The interfaces are:
asynManager provides services for communicating with a device connected to a port.
asynCommon is an interface that must be implemented by all low level drivers. The methods are:
e report - Report status of port.
e connect - Connect to the port or device.
e disconnect - Disconnect from the port or device.
asynTrace is an interface for generating diagnostic messages.
asynLockPortNotify is an interface that is implemented by a driver which is an asynUser of another driver. An
example is a serial bus driver that uses standard serial support. asynManager calls asynLockPortNotify whenever

it locks or unlocks the port.

asynDrvUser is an interface for communicating information from device support to a driver without the device
support knowing any details about what is passed.

Generic Interfaces

In addition to asynCommon and optionally asynDrvUser, port drivers can implement one or more of the following
message and/or register based interfaces.

asynOctet methods for message based devices

asynFloat64 methods for devices that read/write IEEE float values

asynFloat32Array methods for devices that read/write arrays of IEEE 32-bit float values

asynFloat64 Array methods for devices that read/write arrays of IEEE 64-bit float values

asynInt32 methods for devices that read/write integer values. Many analog I/O drivers can use this interface.

asynInt64 methods for devices that read/write 64-bit integer values.

8 Standard Interfaces

asynDriver

asynInt8 Array methods for devices that read/write arrays of 8-bit integer values

asynlnt16Array methods for devices that read/write arrays of 16-bit integer values
asynInt32Array methods for devices that read/write arrays of 32-bit integer values
asynInt64Array methods for devices that read/write arrays of 64-bit integer values

asynUInt32Digital methods for devices that read/write arrays of digital values. This interface provides a mask to
address individual bits within registers.

asynGenericPointer methods for devices that read/write arbitrary structures, passed via a void* pointer. The client
and the server of course need to agree on the structure type being pointed to.

asynEnum methods for devices to define enum strings, values, and severities.

asynOption methods for device configuration using key/value pairs.

asynManager

asynManager is an interface and associated code. It is the "heart" of asynDriver since it manages the interactions
between device support code and drivers. It provides the following services:

® reporting

Method: report
¢ asynUser creation

Methods: createAsynUser, duplicateAsynUser, freeAsynUser

An asynUser is a "handle" for accessing asynManager services and for calling interfaces implemented by
drivers. An asynUser must only be created via a call to createAsynUser or duplicateAsynUser since
asynManager keeps private information for each asynUser. freeAsynUser puts the asynUser on a free list
rather than calling free. Clients can continually create and free asynUsers quickly and without
fragmenting memory.

The call to createAsynUser specifies a processCallback and a timeoutCallback. These are the callbacks
that will be called as a result of a queueRequest.

An asynUser should not be shared between parts of code that can simultaneously access a driver. For

example device support for standard EPICS records should create an asynUser for each record instance.
¢ Basic asynUser services

Methods: connectDevice, disconnect, findInterface

These methods should only be called by the code that created the asynUser.

After an asynUser is created the user calls connectDevice. The user is connected to a port driver that can

communicate with a device. findInterface is called for each interface the user requires. disconnect is
called when the user is done with the device.

Generic Interfaces 9

10

asynDriver

® Queuing services

Methods: queueRequest, cancelRequest, lockPort, unlockPort, queueLockPort, queueUnlockPort,
blockProcessCallback, unblockProcessCallback

queueRequest is a request to call the processCallback specified in the call to createAsynUser. Most
interface methods must only be called from processCallback via a call to queueRequest or between calls
to lockPort/unlockPort.. Exceptions to this rule must be clearly documented (a common exception are
methods registerInterruptUser/cancellnterruptUser).

queueRequest semantics differ for ports that can block and ports that do not block

When registerPort is called by a driver that can block, a thread is created for the port. A set of queues,
based on priority, is created for the thread. queueRequest puts the request on one of the queues. The port
thread takes the requests from the queues and calls the associated callback. Only one callback is active at
a time.

When registerPort is called by a driver that does not block, a mutex is created for the port. queueRequest
takes the mutex, calls the callback, and releases the mutex. The mutex guarantees that two callbacks to a
port are not active at the same time.

lockPort is a request to lock all access to low level drivers until unlockPort is called. If the port blocks
then lockPort and all calls to the port driver may block. lockPort/unlockPort are provided for use by code
that is willing to block or for communication with synchronous ports. A call to lockPort locks all
addresses associated with a multi-address port. Prior to asyn R4-14 pasynManager->lockPort()
immediately took the port mutex when it was available, rather than queueing a request to take the mutex.
From asyn R4-14 to R4-20 lockPort queues a request to access the port and then blocks until the queue
request callback runs in the portThread. When the queue request runs, the thread that called
pasynManager->lockPort() executes, and the portThread blocks, until pasynManager->unlockPort() is
called. In R4-21 the queued lockPort and unlockPort functions were renamed to queueLockPort and
queueUnlockPort, and the original lightweight lockPort and unlockPort functions were restored. Up to
R4-32 when queueLockPort called queueRequest it did not specify a timeout. This could lead to code
being hung if the port disconnected after the call to queueRequest but before the callback was called. The
code would remain hung until the port reconnected. In R4-32 the queueRequest is done with a timeout.
The default timeout value is 2.0 seconds but this can be change with the shell command
asynSetQueueLockPortTimeout(portName, double timeout). If the pasynUser->timeout passed to
queueLockPort is greater than the current port timeout value this larger timeout from the pasynUser is
used instead.

blockProcessCallback is a request to prevent acccess to a device or port by other asynUsers between
queueRequests. blockProcessCallback can be called from a processCallback or when the asynUser has no
request queued. When called from processCallback blocking starts immediately, otherwise blocking starts
the next time processCallback is called. Blocking means that no other asynUser's processCallback will be
called until unblockProcessCallback is called. blockProcessCallback only works with drivers that can
block and an error is returned if it is called for non-blocking drivers.

® Basic Driver services

Methods: registerPort,registerInterface

registerPort is called by a portDriver. registerInterface is called by a portDriver or an interposelnterface.

asynManager

asynDriver

Each port driver provides a configuration command that is executed for each port instance. The
configuration command performs port specific initializations, calls registerPort, and registerInterface for
each interface it implements.

e Attribute Retrieval

Methods: isMultiDevice, canBlock, getAddr, getPortName, isConnected, isEnabled, isAutoConnect

These methods can be called by any code that has access to the asynUser
¢ Connection services

Methods: enable,autoConnect,setAutoConnectTimeout
These methods can be called by any code that has access to the asynUser.

These methods can be called to set the enable and autoConnect settings for a port and/or device. If
autoConnect is true then asynManager does the following:

¢ When the port registers its asynCommon interface, asynManager queues a connection request. It
then waits for a short time for the connection callback to complete. The default time is 0.5
seconds, but this time can be changed with a call to the function
pasynManager->setAutoConnectTimeout(double timeout). This function can be accessed from
the iocsh shell with the asynSetAutoConnectTimeout(double timeout) command. This short
timeout is designed to allow devices time to connect if they are available, but not to excessively
slow down booting of the IOC by waiting, for example, for the system timeout on TCP
connections. Note that this means that it is very likely that the pasynCommon->connect() call will
occur as soon as the asynCommon interface is registered, which means that the driver must have
already done all initialization required for the asynCommon->connect() callback before it
registers the asynCommon interface. If the port does not connect initially, or if it subsequently
disconnects, then asynManager will queue a connection request every 20 seconds. If autoConnect
is true and port/device is enabled but the device is not connected, then queueManager calls calling
asynCommon:connect just before it calls processCallback.

e Exception services

Methods: exceptionCallbackAdd, exceptionCallbackRemove, exceptionConnect, exceptionDisconnect

Device support code calls exceptionCallbackAdd and exceptionCallbackRemove. The complete list of
exceptions is defined in asynDriver.h as "enum asynException".

Whenever a port driver connects or disconnects, normally as a result of a call to asynCommon:connect or
asynCommon:disconnect, it must also call exceptionConnect or exceptionDisconnect.
e Interrupt services

Methods: registerInterruptSource, getlnterruptPvt, createInterruptNode, freelnterruptNode,
addInterruptUser, removelnterruptUser, interruptStart, interruptEnd

Interrupt just means: "I have a new value." Many asyn interfaces, e.g. asynInt32, provide interrupt
support. These interfaces provide methods addInterruptUser and removelnterruptUser. Device support
calls addInterruptUser if it wants to be called whenever an interrupt occurs. Drivers or other code that
implements the interface calls the registered users when it has new data. asynManager provides services
that help drivers implement thread-safe support for interrupts.

asynManager 11

asynDriver

A driver that supports interrupts calls registerInterruptSource for each interface that has associated
interrupts. It calls interruptStart to obtain a list of all registered users and interruptEnd after it calls the
registered users. The driver is also responsible for calling addInterruptUser and removelnterruptUser.

If any calls are made to addInterruptUser or removelnterruptUser between the calls to interruptStart and
interruptEnd, asynManager puts the request on a list and processes the request after interruptEnd is called.

Many standard interfaces, e.g. asynInt32, provide methods registerInterruptUser, cancellnterruptUser.
These interfaces also provide an auxilliary interface, e.g. asynInt32Base, and code which implements
registerInterruptUser and cancellnterruptUser.

On operating systems like vxWorks or RTEMS interruptStart,interruptEnd MUST NOT be called from
interupt level.
Timestamp services

Methods: updateTimeStamp, getTimeStamp, setTimeStamp, registerTimeStampSource,
unregisterTimeStampSource.

These methods provide support for setting a timestamp for a port. This timestamp is typically used to set
the pasynUser->timestamp field that is passed to device support on read or callback operations. Device
support uses the pasynUser->timestamp field to set the record TIME field. This will then be the record
timestamp if the record TSE field is -2. asynManager provides a default timestamp source function which
just calls epicsTimeGetCurrent(). However, registerTimeStampSource can be used to supply a different
user-provided timestamp source function, for example one that calls epicsTimeGetEvent(), or some other
site-specific timestamp source. unregisterTimeStampSource reverts to the default timestamp source in
pasynManager.

General purpose freelist service

Methods: memMalloc, memFree

These methods do not require an asynUser. They are provided for code that must continually allocate and
free memory. Since memFree puts the memory on a free list instead of calling free, they are more
efficient that calloc/free and also help prevent memory fragmentation.

Interpose service

Method: interposelnterface
Code that calls interposelnterface implements an interface which is either not supported by a port driver
or that is "interposed" between the caller and the port driver. For example asynInterposeEos interposes

asynOctet. It performs end of string processing for port drivers that do not support it.

interposelnterface is recursive, i.e. an arbitrary number of interpose layers can exist above a single
port,addr.

Multiple Device vs Single Device Port Drivers

When a low level driver calls registerPort, it declares if it handles multiple devices. This determines how the addr
argument to connectDevice is handled and what getAddr returns.

12

multiDevice false

Multiple Device vs Single Device Port Drivers

asynDriver

The addr argument to connectDevice is ignored and getAddr always returns -1
¢ multiDevice true

If connectDevice is called with addr<0, the connection is to the port and getAddr always returns -1. If
addr>=0, then the caller is connected to the device at the specified address. getAddr will return this

address. An asynUser connected to the port can issue requests that affect all address on the port. For
example disabling access to the port prevents access to all addresses on the port.

Connection Management
asynManager keeps track of the following states:
® connection

Is the port or device connected? This state is initialized to disconnected.
® enabled

Is the port or device enabled? This state is initialized to enabled.
¢ autoConnect

Does asynManager automatically attempt to connect if it finds the port or device disconnected? This is
initialized to the state specified in the call to registerPort.

If the port does not support multiple devices, then port and device status are the same. If the port does support
multiple devices, then asynManager keeps track of the states for the port and for every device connected to the

port.

Whenever any of the states change for a port or device, then all users that previously called
exceptionCallbackAdd for that port or device are called.

Low level drivers must call pasynManager:exceptionConnect whenever they connect to a port or port,addr and
exceptionDisconnect whenever they disconnect.

Protecting a Thread from Blocking

The methods asynManager:report and asynCommon:report can be called by any thread, but the caller is blocked
until the report finishes. lockPort, unlockPort, queueLockPort, queueUnlockPort, and most port methods may
block. The other asynManager methods can be called by any thread including portThread. None of these methods
block.

Unless stated otherwise the methods for other interfaces must only be called by processCallback or by calls
between lockPort/unlockPort, or queueLockPort/queueUnlockPort.

Interface methods registerInterruptUser and cancellnterruptUser must never block. The registerInterruptUser
callback must not block because it could be called by a non blocking driver.

portThread

If a driver calls asynManager:registerPort with the ASYN_CANBLOCK attributes bit set, then asynManager
creates a thread for the port. Each portThread has its own set of queues for the calls to queueRequest. Four queues

Connection Management 13

asynDriver

are maintained. One queue is used only for asynCommon:connect and asynCommon:disconnect requests. The
other queues provide different priorities: low, medium, and high. queueRequests to any queue other then the
connection queue will be rejected if the port is not connected. portThread runs forever implementing the
following algorithm:

1. Wait for work by calling epicsEventMustWait. Other code such as queueRequest call epicsEventSignal.
2. If the port is disabled, go back to 1.
3. For every element in queue, asynQueuePriorityConnect:

¢ Removes the element from the queue.
¢ Calls the user's callback

4. For each element of the queues asynQueuePriorityHigh, ...,asynQueuePriorityLow.

¢ If disabled, skip this element.
¢ If not connected and autoConnect is true for the device, then attempt to connect to the device.
¢ If not connected, skip this element.
¢ If blocked by another thread, skip this element.
¢ If not blocked and user has requested blocking, then blocked.
¢ Remove from queue and:
¢ lock port
¢ call user callback
¢ unlock port

The actual code is more complicated because it unlocks before it calls code outside asynManager. This means that
the queues can be modified and exceptions may occur.

Overview of Queuing

When discussing queuing it is useful to think of 3 components of asyn:

1. asynManager. This is the core part of asyn. It knows nothing about EPICS records. In fact it is completely

independent of EPICS except that it uses libCom for OS-independent things like mutexes, message
queues, events, etc. The queuing it provides is for callback requests to communicate with asynchronous
drivers (ASYN_CANBLOCK) via pasynManager->queueRequest().

. Standard asyn device support (devEpics directory). This is the only part of asyn that knows about EPICS

records and depends on EPICS components other than libCom. It supports callbacks from the driver
under 3 conditions:

1. Input records with SCAN=I/O Intr

2. Input records with periodic scanning (asynInt32Average and asynFloat64Average only)

3. Output records with asyn:READBACK=1.
The callback values can be placed in a ring buffer so that values are not lost if the callbacks happen faster
than the record can process. The size of the ring buffer can be controlled with the asyn:FIFO info tag. The
default is 10 for scalar records. The default is 0 for waveform records, and for stringout and stringin
records. If the ring buffer is in use then each driver callback results in pushing a new value into the buffer
and a request to process the record in a separate callback thread. If the ring buffer is full then the oldest
value in the queue is discarded and the new value is added. This guarantees that the record will eventually
have the value of the most recent callback, but it may skip some before this. If
ASYN_TRACE_WARNING is set then a warning message is printed. The driver callbacks do not block
waiting for the record to process.

. asynPortDriver. asynPortDriver does not support queueing. It does have a parameter library that stores the

most recent value of scalar parameters. It does not store values for array parameters.

14

portThread

asynDriver

Theory of Operation

Initialization

During initialization, port drivers register each communication port as well as all supported interfaces.

User code creates an asynUser, which is a "handle" for accessing asynDriver facilities, by calling
pasynManager->createAsynUser (processCallback, timeoutCallback) ;

An asynUser has the following features:

¢ An asynUser is the means by which asynManager manages multiple requests for accessing a port.

e processCallback,which is used by queueRequest described below, is the addresss of a user supplied
callback routine.

e timeoutCallback is the address of caller supplied callback that will be called if a queueRequest remains on
the queue too long.

® Device support code should create an asynUser for each "atomic" access to low level drivers, i.e. a set of
calls that must not be interlaced with other calls to the low level drivers. For example device support for
EPICS record support should create an asynUser for each record instance.

¢ Device support code should NOT try to share an asynUser between multiple sources of requests for
access to a port. If this is done then device support must itself handle contention issues that are already
handled by asynManager.

User code connects to a low level driver via a call to

status = pasynManager->connectDevice (pasynUser, portName, addr) ;

This call must specify the name of the port and the address of the device. It then calls findInterface to locate the
interfaces with which it calls the driver. For example:

pasynInterface = pasynManager->findInterface (pasynUser,asynOctetType,1);
Requesting access to a port
User code can request access to a port by two methods:

® queueRequest -

The processCallback passed to createAsynUser makes calls to the port interfaces.
¢ JlockPort/unlockPort, queueL.ockPort/queueUnlockPort -

The caller can make calls to the port interfaces while the lock is held. These calls and calls to the port
may block and thus should NOT be used by code that should not block, e.g. synchronous device support
for EPICS records.

queueRequest - Flow of Control

User code requests access to a port by calling:

Theory of Operation 15

asynDriver

status = pasynManager->queueRequest (pasynUser,priority,timeout);
This results in either processCallback or timeoutCallback being called. Most requests to a port must be made from
processCallback. queueRequest does not block. If queueRequest is called for a port that can block the request is
queued to a thread dedicated to the port. If queueRequest is called for a port does not block it just calls

processCallback. guarantee is valid only if low level drivers are only accessed by calling queueRequest,
lockPort/unlockPort, and/or queueLockPort/queueUnlockPort

The following examples are based on EPICS 10C record/device support.

The first example shows access to a port that can block.

Code running in
application thread

Code running in
port thread

Record Support

- e

,K | 7/)E

Record Device Support "y
R - b
) 5 /

ASYN

Work Queue 6

\‘{ LT

Low-level Driver ;

-

Figure 1: Asynchronous Control Flow

The sequence of record device support events that occurs starting with an application thread is pictured above in
Figure 1, and explained below in the following steps:

1. Record processing calls device support with PACT 0 (Processing is not active).

2. Device support calls queueRequest.

3. queueRequest places the request on the driver work queue. The application thread is now able to go on
and perform other operations. Subsequent operations for this I/O request are handled in the port driver
thread.

4. The portThread removes the I/O request from the work queue.

. The portThread calls the processCallback located in Record device support.

6. processCallback calls the low-level driver. The low-level driver read or write routine blocks until the I/O
completes or until a timeout occurs. The low-level driver routine returns the results of the I/O operation to
processCallback.

9

16 queueRequest - Flow of Control

asynDriver

7. processCallback requests that the record be processed. NOTE: The process request will be made by one
of the standard callback requests rather than the port thread.

8. Record support calls device support again, this time with PACT 1(processing is active). Device support
updates fields in the record and returns to record support which completes record processing.

The second example shows access to a port that cannot block.

All code runs in
application thread

Record Support

PG S i
= D

Record Device Support 5

N =

ASYN

Low-level Driver é

Figure 2: Synchronous Control Flow

The sequence of record device support events that occurs starting with an application thread is pictured above in
Figure 2, and explained below in the following steps:

1. Record processing calls device support.

2. Device support calls queueRequest.

3. Since the port is synchronous, i.e. can not block, queueRequest locks the port and then calls the
processCallback.

4. processCallback calls the low-level driver read or write routine. The low-level driver routine returns the
results of the I/O operation to processCallback.

5. processCallback returns to queueRequest, which unlocks the port and returns to device support, which
returns to record support, which completes record processing.

asynDriver Structures and Interfaces

asynDriver.h describes the following:
¢ asynStatus - An enum that describes the status returned by many methods.

¢ asynException - An enum that describes exceptions.
¢ asynQueuePriority - An enum that describes the queue priorities.

asynDriver Structures and Interfaces 17

asynDriver

e asynUser - A struture that contains generic information and is the "handle" for calling most methods.

¢ asynInterface - a structure that describes an interface.
¢ userCallback - a typedef for the user process callback function described above.
e exceptionCallback - a typedef for a user callback to be called when exceptions occur.

¢ timeStampCallback - a typedef for a user callback function that will be called by updateTimeStamp.

® asynManager - An interface for communicating with asynDriver.

¢ asynCommon - An interface providing methods that must be implemented by all low level drivers.
¢ asynTrace - An interface plus associated functions and definitions that implement the trace facility.

asynStatus

Defines the status returned by most methods. If a method returns a status other than asynSuccess, and one of the

arguments to the method is pasynUser, then the method is expected to write a message into
pasynUser->errorMessage.

typedef enum {

asynSuccess,asynTimeout, asynOverflow, asynError, asynDisconnected, asynDisabled

}asynStatus;

asynStatus

asynSuccess The request was successful.

asynTimeout The request failed with a timeout.
The driver has lost input data. This can happen if an internal buffer or the user supplied buffer

asynOverflow is too small. Whenever possible, low level drivers should be written so that the user can read
input in small pieces.

asynError Some other error occured.

asynDisconnected |The request failed because the port is not connected.

asynDisabled The request failed because the port or device is disabled.

asynException

Defines the exceptions for method exceptionOccurred

typedef enum {
asynExceptionConnect, asynExceptionEnable, asynExceptionAutoConnect,
asynExceptionTraceMask, asynExceptionTraceIOMask, asynExceptionTraceInfoMask,
asynExceptionTraceFile, asynExceptionTraceIOTruncateSize

} asynException;

asynException

asynExceptionConnect The connection state of the port or device has changed.
asynExceptionEnable The enable state of the port or device has changed.
asynExceptionAutoConnect The autoConnect state of the port or device has changed.
asynExceptionTraceMask The traceMask for the port or device has changed.
asynExceptionTracelOMask The tracelOMask for the port or device has changed.
asynExceptionTraceInfoMask The traceInfoMask for the port or device has changed.
asynExceptionTraceFile The trace file for the port or device has changed.

18

asynStatus

asynDriver

|asynExceptionTraceIOTruncateSize |The tracelOTruncateSize for the port or device has changed.

asynQueuePriority

This defines the priority passed to queueRequest.

typedef enum {

asynQueuePriorityLow, asynQueuePriorityMedium, asynQueuePriorityHigh,
asynQueuePriorityConnect
}asynQueuePriority;

asynQueuePriority

asynQueuePriorityLow Lowest queue priority.

asynQueuePriorityMedium [Medium queue priority.

asynQueuePriorityHigh High queue priority.

asynQueuePriorityConnect

Queue a connect or disconnect request. This priority must be used for and only for
connect/disconnect requests.

asynUser

Describes a structure that user code passes to most asynManager and driver methods. Code must allocate and free
an asynUser by calling asynManager:createAsynUser (or asynManager:duplicateAsynUser) and
asynManager:freeAsynUser.

typedef struct asynUser {

char *errorMessage;

int errorMessageSize;

/* timeout must be set by the user */

double timeout; /* Timeout for I/O operations*/

void *userPvt;

void *userData;

/* The following is for use by driver */

void *drvUser;

/* The following is normally set by driver via asynDrvUser->create() */
int reason;

epicsTimeStamp timestamp;
/* The following are for additional information from method calls */

int auxStatus; /* For auxillary status*/
int alarmStatus; /* Typically for EPICS record alarm status */
int alarmSeverity; /* Typically for EPICS record alarm severity */
}asynUser;
asynUser
errorMessage When a method returns asynError it should put an error message into errorMessage via a call

asynException

to:

epicsSnprintf (pasynUser—->errorMessage, pasynUser->errorMessageSize,
"<format>",...)

The error message should not end with (nor contain) a newline character sequence (e.g. \n). It

is up to user code to decide whether and how to display the error message. Keeping newlines
out of the error message make it easy for user code to embed the error message in another

19

asynDriver

message or output format.

errorMessageSize |The size of errorMessage. The user can not change this value.

The number of seconds before timeout for I/O requests. This is set by the user and can be
changed between calls to a driver. If a call to a low level driver results in the driver making
many I/O requests this is the time for each I/O request.

The meaning is as follows:

timeout . .
> (0.0 Wait for up to timeout seconds for the I/O to complete

= (0.0 Peform any I/O that can be done without blocking. Return timeout error if no I/O can be
done without blocking.

< 0.0 Infinite timeout. Wait forever for I/O to complete.

For use by the user. The user should set this immediately after the call to
pasynManager->create AsynUser.

userPvt
If this is changed while asynUser is queued, the results are undefined, e.g. it could cause a
crash.

userData Also for use by the user.

A driver can use this to hold asynUser specific data. The asynDrvUser interface is used for

drvUser o .
communication between asynUser and the driver.

Drivers and asynUsers can use this as a general purpose field. By convention it is used to
determine what "command" is being sent over a particular interface. For example an A/D
driver implementing the asynInt32 interface might define reason=0 to mean "return the A/D
conversion", while reason=1 might mean "return the amplifier gain". Typically drivers
implement the asynDrvUser interface, and use this to convert from descriptive strings for
commands (e.g. "DATA" or "GAIN" in this example) to the enum "reason". A driver that is
calling an interrupt users often uses reason to decide if the users callback should be called.
Values of reason less than O are reserved for standard meanings. For example
ASYN_REASON_SIGNAL is used to mean "out of band" request. The devGpib support uses
this to report SRQs.

Devices which provide their own time stamps use this field to provide the time value for
records whose TSE field is set to "-2".

Any method can provide additional return information in auxStatus. The meaning is
auxStatus determined by the method. Callbacks can use auxStatus to set record alarm status in device
support callback functions.

reason

timestamp

Any method can provide additional return information in alarmStatus. The meaning is
alarmStatus determined by the method. Callbacks can use alarmStatus to set record alarm status in device
support callback functions.

Any method can provide additional return information in alarmStatus. The meaning is

alarmSeverity determined by the method. Callbacks can use alarmSeverity to set record alarm severity in
device support callback functions.
asyninterface

This defines an interface registered with asynPortManager:registerPort or asynManager:interposelnterface.

typedef struct asynlInterface({

20 asynUser

asynDriver

const char *interfaceType; /*For example, asynCommonType */
void *pinterface; /*For example, pasynCommon */
void *drvPvt;

tasynInterface;

asynlnterface

interfaceType [A character string describing the interface.

pinterface A pointer to the interface. The user must cast this to the correct type.
drvPvt For the exclusive use of the code that called registerPort or interposelnterface.
asynManager

This is the main interface for communicating with asynDriver.

/*registerPort attributes*/
#define ASYN_MULTIDEVICE 0x0001
#define ASYN_CANBLOCK 0x0002

/*standard values for asynUser.reason*/
#define ASYN_REASON_SIGNAL -1

#define ASYN_ REASON_RESERVED_LOW 0x70000000
#define ASYN_REASON_RESERVED HIGH Ox7FFFFFFF

#define ASYN_REASON_QUEUE_EVEN_IF_NOT_CONNECTED ASYN_REASON_RESERVED_LOW

typedef void (*userCallback) (asynUser *pasynUser);
typedef void (*exceptionCallback) (asynUser *pasynUser,asynException exception);
typedef void (*timeStampCallback) (void *userPvt, epicsTimeStamp *pTimeStamp) ;

typedef struct interruptNode{
ELLNODE node;
void *drvPvt;
}interruptNode;
typedef struct asynManager {
void (*report) (FILE *fp,int details,const char*portName);
asynUser * (*createAsynUser) (userCallback process,userCallback timeout);
asynUser * (*duplicateAsynUser) (asynUser *pasynUser,
userCallback queue,userCallback timeout);
asynStatus (*freeAsynUser) (asynUser *pasynUser);
void *(*memMalloc) (size_t size);
void (*memFree) (void *pmem,size_t size);
asynStatus (*isMultiDevice) (asynUser *pasynUser,
const char *portName,int *yesNo);
/* addr = (-1,>=0) => connect to (port,device) */
asynStatus (*connectDevice) (asynUser *pasynUser,
const char *portName,int addr);
asynStatus (*disconnect) (asynUser *pasynUser);
asynStatus (*exceptionCallbackAdd) (asynUser *pasynUser,
exceptionCallback callback);
asynStatus (*exceptionCallbackRemove) (asynUser *pasynUser);
asynInterface * (*findInterface) (asynUser *pasynUser,
const char *interfaceType, int interposelnterfaceOK);
asynStatus (*queueRequest) (asynUser *pasynUser,
asynQueuePriority priority,double timeout);
asynStatus (*cancelRequest) (asynUser *pasynUser,int *wasQueued);
asynStatus (*blockProcessCallback) (asynUser *pasynUser, int allDevices);
asynStatus (*unblockProcessCallback) (asynUser *pasynUser, int allDevices);
asynStatus (*lockPort) (asynUser *pasynUser);

asynlinterface

21

asynDriver

asynStatus (*unlockPort) (asynUser *pasynUser);

asynStatus (*queueLockPort) (asynUser *pasynUser);
asynStatus (*queueUnlockPort) (asynUser *pasynUser);
asynStatus (*setQueuelLockPortTimeout) (asynUser *pasynUser,
asynStatus (*canBlock) (asynUser *pasynUser,int *yesNo);
asynStatus (*getAddr) (asynUser *pasynUser,int *addr);
asynStatus (*getPortName) (asynUser *pasynUser,const char **pportName);

/* drivers call the following*/

asynStatus (*registerPort) (const char *portName,
int attributes, int autoConnect,

unsigned int priority,unsigned int stackSize);
asynStatus (*registerInterface) (const char *portName,

asynInterface *pasynlnterface);

asynStatus (*exceptionConnect) (asynUser *pasynUser);
asynStatus (*exceptionDisconnect) (asynUser *pasynUser);

/*any code can call the following*/

asynStatus (*interposelnterface) (const char *portName,

int addr,

asynInterface *pasynInterface,

asynInterface **ppPrev);
asynStatus (*enable) (asynUser *pasynUser,int yesNo);

asynStatus (*autoConnect) (asynUser *pasynUser,int yesNo);
asynStatus (*isConnected) (asynUser *pasynUser,int *yesNo);
asynStatus (*isEnabled) (asynUser *pasynUser,int *yesNo);
asynStatus (*isAutoConnect) (asynUser *pasynUser,int *yesNo);

asynStatus (*setAutoConnectTimeout) (double timeout);
asynStatus (*waitConnect) (asynUser *pasynUser,

/*The following are methods for interrupts*/
asynStatus (*registerInterruptSource) (const char *portName,

asynInterface *pasynlInterface,
asynStatus (*getInterruptPvt) (asynUser *pasynUser,

const char *interfaceType,
interruptNode * (*createlInterruptNode) (void *pasynPvt);
asynStatus (*freeInterruptNode) (asynUser *pasynUser, interruptNode *pnode);
asynStatus (*addInterruptUser) (asynUser *pasynUser,

double timeout);

void **pasynPvt);

interruptNode*pinterruptNode) ;

asynStatus (*removelInterruptUser) (asynUser *pasynUser,

interruptNode*pinterruptNode) ;
asynStatus (*interruptStart) (void *pasynPvt,ELLLIST **plist);
asynStatus (*interruptEnd) (void *pasynPvt);

/* Time stamp functions */

asynStatus (*registerTimeStampSource) (asynUser *pasynUser,

asynStatus (*unregisterTimeStampSource) (asynUser *pasynUser);

asynStatus (*updateTimeStamp) (asynUser *pasynUser);

asynStatus (*getTimeStamp) (asynUser *pasynUser,
asynStatus (*setTimeStamp) (asynUser *pasynUser,

const char *(*strStatus) (asynStatus status);

}asynManager;

epicsShareExtern asynManager *pasynManager;

asynManager

void *userPvt,

double timeout);

void **pasynPvt);

timeStampCallback callback);

epicsTimeStamp *pTimeStamp) ;
const epicsTimeStamp *pTimeStamp) ;

Reports status about the asynPortManager. If portName is non-NULL it
report reports for a specific port. If portName is NULL then it reports for each
registered port. It also calls asynCommon:report for each port being reported.

createAsynUser

22

Creates an asynUser. The caller specifies two callbacks, process and timeout.
These callback are only called as a result of a queueRequest. The timeout
callback is optional. errorMessageSize characters are allocated for
errorMessage. The amount of storage can not be changed. This method doesn't

asynManager

asynDriver

return if it is unable to allocate the storage.

duplicateAsynUser

Creates an asynUser by calling createAsynUser. It then initializes the new
asynUser as follows: The fields timeout, userPvt, userData, and drvUser are
initialized with values taken from pasynUser. Its connectDevice state is the
same as that for pasynUser.

freeAsynUser

Free an asynUser. The user must free an asynUser only via this call. If the
asynUser is connected to a port, asynManager:disconnect is called. If the
disconnect fails, this call will also fail. The storage for the asynUser is saved
on a free list and will be reused in later calls to createAsynUser or
duplicateAsynUser. Thus continually calling createAsynUser (or
duplicateAsynUser) and freeAsynUser is efficient.

memMalloc

memkFree

Allocate/Free memory. memMalloc/memFree maintain a set of freelists of
different sizes. Thus any application that needs storage for a short time can use
memMalloc/memFree to allocate and free the storage without causing
memory fragmentation. The size passed to memFree MUST be the same as
the value specified in the call to memMalloc.

isMultiDevice

Answers the question "Does the port support multiple devices?" This method
can be called before calling connectDevice.

connectDevice

Connect the asynUser structure to a device specified by portName, addr. The
port Name is the same as that specified in a call to registerPort. The call will
fail if the asynUser is already connected to a device. If the port does not
support multiple devices, than addr is ignored. connectDevice only connects
the asynUser to the port driver for the portName,addr. The port driver may or
may not be connected to the actual device. Thus, connectDevice and
asynCommon:connect are completely different.

See the Theory of Operation section for a description of the difference
between single and multi-device port drivers.

disconnect

Disconnect the asynUser from the port,addr to which it is connected via a
previous call to connectDevice. The call will fail if the asynUser is queued or
locked, or has a callback registered via exceptionCallbackAdd. Note that
asynManager:disconnect and asynCommon:disconnect are completely
different.

exceptionCallbackAdd

Callback will be called whenever one of the exceptions defined by
asynException occurs. The callback can call isConnected, isEnabled, or
isAutoConnect to find the connection state. asynTrace provides methods to
find out the current trace settings.

exceptionCallbackRemove

Callback is removed. This must be called before disconnect.

findInterface

asynManager

Find a driver interface. If interposelnterfaceOK is true, then findInterface
returns the last interface registered or interposed. Otherwise, the interface
registered by registerPort is returned. It returns O if the interfaceType is not
supported.

The user needs the address of the driver's interface and of pdrvPvt so that calls
can be made to the driver. For example:

asynInterface *pasynlInterface;
asynOctet *pasynOctet;
void *pasynOctetPvt;

23

asynDriver

pasynInterface = pasynManager->findInterface (
pasynUser,asynOctetType, 1) ;

if (!pasynIinterface) { /*error do something*/}

pasynOctet = (asynOctet *)pasynInterface->pinterface;

pasynOctetPvt = pasynInterface->pdrvPvt;

/* The following call must be made from a callback */
pasynOctet—->read (pasynOctetPvt, pasynUser, ...

queueRequest

When registerPort is called, the caller must specify if it can block, i.e. attribute
bit ASYN_CANBLOCK is set or cleared. If the port has been registered with
ASYN_CANBLOCK true then the request is put on a queue for the thread
associated with the queue. If the port has been registered with
ASYN_CANBLOCK false then queueRequest locks the port and calls the
process callback. In either case the process callback specified in the call to
createAsynUser is called.

If the asynUser is already on a queue, asynError is returned. The timeout starts
when the request is queued. A value less than or equal to 0.0 means no
timeout. The request is removed from the queue before the callback is called.
Callbacks are allowed to make requests to asynManager such as
queueRequest, blockProcessCallback, etc. It is even permissible to call
freeAsynUser from a callback but the request will be delayed until after the
callback completes.

The priority asynQueuePriorityConnect must be used for
asynCommon:connect and asynCommon:disconnect calls, and must NOT be
used for any other calls.

If a timeout callback was not passed to createAsynUser and a queueRequest
with a non-zero timeout is requested, the request fails.

Attempts to queue a request other than a connection request to a disconnected
port will fail unless the reason is
ASYN_REASON_QUEUE_EVEN_IF_NOT_CONNECTED.

cancelRequest

If a asynUser is queued, remove it from the queue. If either the process or
timeout callback is active when cancelRequest is called than cancelRequest
will not return until the callback completes.

blockProcessCallback

unblockProcessCallback

24

blockProcessCallback is a request to prevent acccess to a device or port by
other asynUsers between queueRequests. blockProcessCallback can be called
from a processCallback or when the asynUser has no request queued. When
called from processCallback blocking starts immediately, otherwise blocking
starts the next time processCallback is called. Blocking means that no other
asynUser's processCallback will be called until unblockProcessCallback is
called. Note the following restrictions for blockProcessCallback:

e blockProcessCallback only works with drivers that can block and an
error is returned if it is called for non-blocking drivers.

e queueRequests that specify a priority of asynQueuePriorityConnect
are not blocked.

asynManager

asynDriver

It is permissible to simultaneously block allDevices and also the device to
which the asynUser is connected.

lockPort/unlockPort

Lock access to a port driver. This is used by code that is willing to block while
making calls to a port driver. The code can call lockPort, make an arbitrary
number of calls to the port driver, and than call unlockPort. Other code that
calls queueRequest and/or lockPort will be delayed between the calls to
lockPort and unlockPort.

queueLockPort/queueUnlockPort

Lock access to a port driver. This is used by code that is willing to block while
making calls to a port driver. The code can call queueLockPort, make an
arbitrary number of calls to the port driver, and than call queueUnlockPort.
Other code that calls queueRequest and/or lockPort will be delayed between
the calls to queueLockPort and queueUnlockPort. The difference between
lockPort and queueLockPort is that queueLockPort queues a request to lock
the port, using the same queues as queueRequest. This means that a thread that
repeatedly calls queueLockPort without sleeping between calls will still allow
other threads to access the port. This is not true with lockPort, which will take
a mutex as soon as the port is free, and can prevent other threads from
accessing the port at all.

setQueueLockPortTimeout

Sets the timeout passed to queueRequest() in queueLockPort(). The default
value of 2.0 seconds is set when the port is created. This function can be used
to change that value. Note that if the pasynUser->timeout value passed to
queueLockPort is larger than the current value then this larger timeout value is
used.

canBlock

yesNo is set to (0,1), i.e. (false,true) if calls to the low level driver can block.
The value is determined by the attributes passed to registerPort.

getAddr

*addr is set equal to the address which the user specified in the call to
connectDevice or -1 if the port does not support multiple devices.

See the Theory of Operation section for a description of the difference
between single and multi-device port drivers.

getPortName

*pportName is set equal to the name of the port to which the user is
connected.

registerPort

This method is called by drivers. A call is made for each port instance.
Attributes is a set of bits. Currently two bits are defined:
ASYN_MULTIDEVICE and ASYN_CANBLOCK. The driver must specify
these properly. autoConnect, which is (0,1) for (no,yes), provides the initial
value for the port and all devices connected to the port. priority and stacksize
are only relevant if ASYN_CANBLOCK=1, in which case asynManager uses
these values when it creates the port thread with epicsThreadCreate(). If
priority is 0, then the default value epicsThreadPriorityMedium will be
assigned. If stackSize is 0, the default value of
epicsThreadGetStackSize(epicsThreadStackMedium) will be assigned. The
portName argument specifies the name by which the upper levels of the asyn
code will refer to this communication interface instance. The registerPort
method makes an internal copy of the string to which the name argument
points.

registerInterface

asynManager

This is called by port drivers for each supported interface. This method does
not make a copy of the asynInterface to which the pasynlInterface argument
points. Callers must store the asynInteface in a location which is retained for

25

asynDriver

the lifetime of the port. This is commonly done by placing the asynInterface
structure in the 'driver private' structure.

exceptionConnect

This method must be called by the driver when and only when it connects to a
port or device.

exceptionDisconnect

This method must be called by the driver when and only when it disconnects
from a port or device.

interposelnterface

This is called by a software layer between client code and the port driver. For
example, if a device echos writes then a software module that issues a read
after each write could be created and call interposelnterface for interface
asynOctet.

Multiple interposelnterface calls for a port/addr/interface can be issued.
*ppPrev is set to the address of the previous asynlnterface. Thus the software
module that last called interposelnterface is called by user code. It in turn can
call the software module that was the second to last to call interposelnterface.
This continues until the actual port driver is called.

interposelnterface can also be called with an asynInterface that has not been
previously registered or replaced. In this case *ppPrev will be null. Thus, new
interfaces that are unknown to the low level driver can be implemented.

enable

If enable is set yes, then queueRequests are not dequeued unless their queue
timeout occurs.

autoConnect

If autoConnect is true and the port or device is not connected when a user
callback is scheduled to be called, asynManager calls
pasynCommon->connect. See the discussion of Flow of Control below for
details.

1sConnected

*yesNo is set to (0,1) if the port or device (is not, is) connected.

isEnabled

*yesNo is set to (0,1) if the port or device (is not, is) enabled.

isAutoConnect

*yesNo is set to (0,1) if the portThread (will not, will) autoConnect for the
port or device.

setAutoConnectTimeout

Changes the timeout when waiting for the initial connection callback from
port drivers. This callback occurs in response to asynManager queueing a
connection request, which happens when the port driver registers its
asynCommon interface. The default timeout is 0.5 seconds.

waitConnect

Wait for up to timeout seconds for the port/device to connect.

registerInterruptSource

If a low level driver supports interrupts it must call this for each interface that
supports interrupts. pasynPvt must be the address of a void * that will be given
a value by registerInterruptSource. This argument is passed interruptStart and
interruptEnd.

Any code that wants to call createlnterruptNode but does not know the adresss
of pasynPvt can find it via this method. The caller must be connected to a

etInterruptPvt . . .

& uptey device, 1.e. must have called connectDevice. If the caller is not connected,
getInterruptPvt returns asynError.
These methods are the only way a user can allocate and free an interruptNode.

createlnterruptNode pasynPvt is the value obtained from getlnterruptPvt.
createlnterruptNode/freelnterruptNode are separate methods rather than being

freelnterruptNode done automatically by addInterruptUser/removelnterruptUser so that
addInterruptUser/removelnterruptUser can be efficient.

26 asynManager

asynDriver

Code that implements registerInterruptUser/cancellnterruptUser must call
addInterruptUser/removelnterruptUser to add and remove users from the list
or else calls to interruptStart/interruptEnd will not work. This is an efficient

addInterruptUser operation so that a user can repeatedly call
registerInterruptUser/cancellnterruptUser. If either of these is called while a
removelnterruptUser interrupt is being processed, i.e. between calls to interruptStart/interruptEnd,

the call will block until interruptEnd is called. The process callback for the
asynUser specified in the call to addInterruptUser must not call
removelnterruptUser or it will block forever.

The code that implements interrupts is interface dependent. The only service
asynManager provides is a thread-safe implemention of the user list. When the

interruptStart code wants to call the callback specified in the calls to registerInterruptUser, it
calls interruptStart to obtain the list of callbacks. When it is done it calls
interruptEnd interruptEnd. If any requests are made to

addInterruptUser/removelnterruptUser between the calls to interruptStart and
interruptEnd, asynManager delays the requests until interruptEnd is called.

registerTimeStampSource Registers a user-defined time stamp callback function.
Unregisters any user-defined timestamp callback function and reverts to the
unregisterTimeStampSource default timestamp source function in asynManager, which simply calls
epicsTimeGetCurrent().

Set the current time stamp for this port by calling either the default timestamp
updateTimeStamp source, or a user-defined timestamp source that was registered with
registerTimeStampSource.

Get the current time stamp for this port that was returned by the most recent

getTimeStamp call to updateTimeStamp.
. Set the current time stamp for this port directly from the timestamp value
setTimeStamp . .
passed to this function.
strStatus Returns a descriptive string corresponding to the asynStatus value.
asynCommon

asynCommon describes the methods that must be implemented by drivers.

/* Device Interface supported by ALL asyn drivers*/

#define asynCommonType "asynCommon"

typedef struct asynCommon {
void (*report) (void *drvPvt,FILE *fp,int details);
/*following are to connect/disconnect to/from hardware*/
asynStatus (*connect) (void *drvPvt,asynUser *pasynUser);
asynStatus (*disconnect) (void *drvPvt,asynUser *pasynUser);

}asynCommon;

asynCommon

report Generates a report about the hardware device. This is the only asynCommon method that does not

p have to be called by the queueRequest callback or between calls to lockPort/unlockPort.

connect Connect to the hardware device or communication path. The queueRequest must specify priority
asynQueuePriorityConnect.

disconnect Disconnect from the hardware device or communication path. The queueRequest must specify
priority asynQueuePriorityConnect.

asynCommon 27

asynDriver

asynCommonSynclO

asynCommonSynclO provides a convenient interface for software that needs to perform "synchronous" operations
to an asyn device, i.e. that blocks while waiting for the port to be available and for the operation to complete. The
code does not need to handle callbacks or understand the details of the asynManager and asynCommon interfaces.

typedef struct asynCommonSyncIO {

asynStatus (*connect) (const char *port, int addr,

asynUser **ppasynUser, const char *drvInfo);

asynStatus (*disconnect) (asynUser *pasynUser);

asynStatus (*connectDevice) (asynUser *pasynUser);

asynStatus (*disconnectDevice) (asynUser *pasynUser);

asynStatus (*report) (asynUser *pasynUser, FILE *fd, int details);
} asynCommonSyncIO;
epicsShareExtern asynCommonSyncIO *pasynCommonSyncIO;

Note that there is a potential for confusion in the connect* and disconnect* function names of this interface. For
consistency with the other SynclO interfaces, connect calls pasynManager->connectDevice, disconnect calls
pasynManager->disconnect, connectDevice calls asynCommon->connect, and disconnectDevice calls
asynCommon->disconnect.

asynDrvUser

asynDrvUser provides methods that allow an asynUser to communicate user specific information to/from a port
driver

#define asynDrvUserType "asynDrvUser"
typedef struct asynDrvUser {
/*The following do not have to be called via queueRequest callback*/
asynStatus (*create) (void *drvPvt,asynUser *pasynUser,
const char *drvInfo, const char **pptypeName,size_t *psize);
asynStatus (*getType) (void *drvPvt,asynUser *pasynUser,
const char **pptypeName,size_t *psize);
asynStatus (*destroy) (void *drvPvt,asynUser *pasynUser);
}asynDrvUser;

asynDrvUser

The user, i.e. device support calls create. The driver can create any resources it needs. It can use
pasynUser->drvUser to provide access to the resources. If the asynUser and the driver both know how
to access the resources they must agree about the name for the resource and a size. If pptypeName is

create
not null the driver can give a value to *pptypeName. If psize is not null the driver can give a value to
*psize. Unless asynUser receives a typeName and size that it recognizes it must not access
asynUser.drvUser.

getType If other code, e.g. an interposelnterface wants to access asynUser.drvUser it must call this and verify

that typeName and size are what it expects.

destroy [Destroy the resources created by create and set asynUser.drvUser null.

asynLockPortNotify

This is provided for port drivers that are an asynUser of another port driver. For example a serial bus driver can be
implemented by connecting to a standard serial port to perform the actual I/O. When the serial bus port is locked,
either by the requester calling lockPort or because a queueRequest was dequeued, then the serial bus driver needs

28 asynCommonSynclO

asynDriver

to lock the associated serial port.

The serial bus driver registers interface asynLockPortNotify. Whenever the serial bus port is locked, asynManager
calls pasynLockPortNotify.lock. The serial bus driver calls asynManager.lockPort for the serial port to which it is
connected. Similarly for unlockPort. Thus while the serial bus port is locked, the serial bus is also locked.

asynLockPortNotify is used only by asynManager itself. It is not put in the list of interfaces for the port.

asynLockPortNotify is:

#define asynLockPortNotifyType "asynLockPortNotify"
typedef struct asynLockPortNotify {
asynStatus (*lock) (void *drvPvt,asynUser *pasynUser);
asynStatus (*unlock) (void *drvPvt,asynUser *pasynUser);
}asynLockPortNotify;

asynLockPortNotify

Called when asynManager.lockPort is called. The driver normally calls asynManager.lockPort for the

lock Co
port to which it is connected.

Called when asynManager.unlockPort is called. The driver normally calls asynManager.unlockPort for
the port to which it is connected.

asynOption

unlock

asynOption provides a generic way of setting driver specific options. For example the serial port driver uses this
to specify baud rate, stop bits, etc.

#define asynOptionType "asynOption"
/*The following are generic methods to set/get device options*/
typedef struct asynOption {
asynStatus (*setOption) (void *drvPvt, asynUser *pasynUser,
const char *key, const char *val);
asynStatus (*getOption) (void *drvPvt, asynUser *pasynUser,
const char *key, char *val, int sizeval);
}asynOption;

asynOption

setOption [Set value associated with key.

getOption |Get value associated with key.
Trace Interface

/*asynTrace is implemented by asynManager*/

/*All asynTrace methods can be called from any thread*/
/* traceMask definitions*/

#define ASYN_TRACE_ERROR 0x0001

#define ASYN_TRACEIO_DEVICE 0x0002

#define ASYN_TRACEIO_FILTER 0x0004

#define ASYN_TRACEIO_DRIVER 0x0008

#define ASYN_TRACE_FLOW 0x0010

#define ASYN_TRACE_WARNING 0x0020

/* traceIO mask definitions*/
#define ASYN_TRACEIO_NODATA 0x0000

asynLockPortNotify 29

asynDriver

#define ASYN_TRACEIO_ASCII 0x0001
#define ASYN_TRACEIO_ESCAPE 0x0002
#define ASYN_TRACEIO_HEX 0x0004

/* traceInfo mask definitions*/
#define ASYN_TRACEINFO_TIME 0x0001
#define ASYN_TRACEINFO_PORT 0x0002
#define ASYN_TRACEINFO_SOURCE 0x0004
#define ASYN_TRACEINFO_THREAD 0x0008

/* asynPrint and asynPrintIO are macros that act like

int asynPrintSource (asynUser *pasynUser,int reason, __ FILE__, _ LINE__, const char *format, ...);
int asynPrintIOSource (asynUser *pasynUser,int reason,
const char *buffer, size_t len, _ FILE_ , _ LINE_ , const char *format, ...);

*/

typedef struct asynTrace {
/* lock/unlock are only necessary if caller performs I/O other than */
/* by calling asynTrace methods */
asynStatus (*lock) (asynUser *pasynUser);
asynStatus (*unlock) (asynUser *pasynUser);
asynStatus (*setTraceMask) (asynUser *pasynUser,int mask);

int (*getTraceMask) (asynUser *pasynUser);
asynStatus (*setTraceIOMask) (asynUser *pasynUser,int mask);
int (*getTraceIOMask) (asynUser *pasynUser);
asynStatus (*setTracelInfoMask) (asynUser *pasynUser,int mask);
int (*getTraceInfoMask) (asynUser *pasynUser);
asynStatus (*setTraceFile) (asynUser *pasynUser,FILE *fp);
FILE * (*getTraceFile) (asynUser *pasynUser);
asynStatus (*setTraceIOTruncateSize) (asynUser *pasynUser,size_t size);
size_t (*getTraceIOTruncateSize) (asynUser *pasynUser);
#if defined(__GNUC__) && (__GNUC__ < 3)
/* GCC 2.95 does not allow EPICS_PRINTF_STYLE on function pointers */
int (*print) (asynUser *pasynUser,int reason, const char *pformat, ...);
int (*printSource) (asynUser *pasynUser,int reason, const char *fileName, int line, const char *r
int (*vprint) (asynUser *pasynUser,int reason, const char *pformat, va_list pvar);
int (*vprintSource) (asynUser *pasynUser,int reason, const char *file, int line, const char *pfor
int (*printIO) (asynUser *pasynUser,int reason,
const char *buffer, size_t len,const char *pformat, ...);
int (*printIOSource) (asynUser *pasynUser, int reason,
const char *buffer, size_t len,const char *file, int line, const char *pformat, ...);
int (*vprintIO) (asynUser *pasynUser,int reason,
const char *buffer, size_t len,const char *pformat, va_list pvar);
int (*vprintIOSource) (asynUser *pasynUser,int reason,
const char *buffer, size_t len,const char *file, int line, const char *pformat, va_list
#else
int (*print) (asynUser *pasynUser,int reason, const char *pformat, ...) EPICS_PRINTF_STYLE (3,4);
int (*printSource) (asynUser *pasynUser,int reason, const char *fileName, int line, const char *r
int (*vprint) (asynUser *pasynUser, int reason, const char *pformat, va_list pvar) EPICS_PRINTF_ST
int (*vprintSource) (asynUser *pasynUser,int reason, const char *file, int line, const char *pfor
int (*printIO) (asynUser *pasynUser,int reason,
const char *buffer, size_t len,const char *pformat, ...) EPICS_PRINTF_STYLE(5,6);
int (*printIOSource) (asynUser *pasynUser, int reason,
const char *buffer, size_t len,const char *file, int line, const char *pformat, ...) EE
int (*vprintIO) (asynUser *pasynUser,int reason,
const char *buffer, size_t len,const char *pformat, va_list pvar) EPICS_PRINTF_STYLE (5,
int (*vprintIOSource) (asynUser *pasynUser,int reason,
const char *buffer, size_t len,const char *file, int line, const char *pformat, va_list
#endif

}asynTrace;
epicsShareExtern asynTrace *pasynTrace;

30 Trace Interface

asynDriver

asynTrace
asynDriver provides a trace facility with the following attributes:

¢ Tracing is turned on/off for individual devices, i.e. a portName, addr.
® Trace has a global trace mask for asynUsers not connected to a port or port, addr.
® The output is sent to a file or to stdout or to errlog.
® A mask determines the type of information that can be displayed. The various choices can be ORed
together. The default value of this mask when a port is created is ASYN_TRACE_ERROR.
¢ ASYN_TRACE_ERROR Run time errors are reported, e.g. timeouts.
¢ ASYN_TRACEIO_DEVICE Device support reports I/O activity.
¢ ASYN_TRACEIO_FILTER Any layer between device support and the low level driver reports
any filtering it does on I/O.
¢ ASYN_TRACEIO_DRIVER Low level driver reports I/O activity.
¢ ASYN_TRACE_FLOW Report logic flow. Device support should report all queue requests,
callbacks entered, and all calls to drivers. Layers between device support and low level drivers
should report all calls they make to lower level drivers. Low level drivers report calls they make
to other support.
¢ ASYN_TRACE_WARNING Report warnings, i.e. conditions that are between
ASYN_TRACE_ERROR and ASYN_TRACE_FLOW.
¢ Another mask determines how message buffers are printed. The various choices can be ORed together.
The default value of this mask when a port is created is ASYN_TRACEIO_NODATA.
¢ ASYN_TRACEIO_NODATA Don't print any data from the message buffers.
¢ ASYN_TRACEIO_ASCII Print with a "%s" style format.
¢ ASYN_TRACEIO_ESCAPE Call epicsStrPrintEscaped.
¢ ASYN_TRACEIO_HEX Print each byte with " %2.2x".
¢ Another mask determines what information is printed at the beginning of each message. The various
choices can be ORed together. The default value of this mask when a port is created is
ASYN_TRACEINFO_TIME.
¢ ASYN_TRACEINFO_TIME prints the date and time of the message.
¢ ASYN_TRACEINFO_PORT prints [port,addr,reason], where port is the port name, addr is the
asyn address, and reason is pasynUser->reason. These are the 3 pieces of "addressing"
information in asyn.
¢ ASYN_TRACEINFO_SOURCE prints the file name and line number, i.e.
[__FILE_ , LINE__] where the asynPrint or asynPrintlO statement occurs.
¢ ASYN_TRACEINFO_THREAD prints the thread name, thread ID and thread priority, i.e.
[epicsThreadGetNameSelf(), epicsThreadGetldSelf(), epicsThreadGetPrioritySelf()].

In order for the trace facility to perform properly; device support and all drivers must use the trace facility. Device
and driver support can directly call the asynTrace methods. The asynPrint and asynPrintIO macros are provided
so that it is easier for device/driver support. Support can have calls like:

asynPrint (pasynUser,ASYN_TRACE_FLOW, "%s Calling queueRequest\n",
someName) ;

The asynPrintlO call is designed for device support or drivers that issue read or write requests. They make calls
like:

asynPrintIO (pasynUser, ASYN_TRACEIO_DRIVER,data,nchars, "%s nchars %d",

someName, nchars) ;

asynTrace 31

asynDriver

The asynTrace methods are implemented by asynManager. These methods can be used by any code that has
created an asynUser and is connected to a device. All methods can be called by any thread. That is, an application
thread and/or a portThread. If a thread performs all I/O via calls to print or printlO, then it does not have to call
lock or unlock. If it does want to do its own /O, it must lock before any I/O and unlock after. For example:

pasynTrace->lock (pasynUser) ;

fd = pasynTrace->getTraceFile (pasynUser);
/*perform I/0 to fd */
pasynTrace->unlock (pasynUser) ;

If the asynUser is not connected to a port, i.e. pasynManager->connectDevice has not been called, then a "global"
device is assumed. This is useful when asynPrint is called before connectDevice.

asynTrace

lock/unlock

These are only needed for code that call asynTrace.print or asynTrace.printlO instead
of asynPrint and asynPrintlO.

print, and printIO both lock while performing their operations. The get methods do not
lock (except for getTraceFile) and they are safe. Except for setTraceFile the set
methods do not block, since worst that can happen is that the user gets a little more or a
little less output.

setTraceMask

Set the trace mask. Normally set by the user requesting it via a shell command or the
devTrace device support. Setting the trace mask for a port also sets the trace mask for
all devices connected to that port

getTraceMask

Get the trace mask. Device support that wants to issue trace messages calls this to see
what trace options have been requested.

setTracelOMask

Set the tracelO mask. Normally set by the user requesting it via a shell command or the
devTrace device support. Setting the tracelO mask for a port also sets the tracelO mask
for all devices connected to that port

getTracelOMask

Get the tracelO mask. Support that wants to issue its own IO messages instead of
calling asynPrintIO should call this and honor the mask settings. Most code will not
need it.

setTraceInfoMask

Set the traceInfo mask. Normally set by the user requesting it via a shell command or
the devTrace device support. Setting the traceInfo mask for a port also sets the
tracelnfo mask for all devices connected to that port

getTracelnfoMask

Get the traceInfo mask. Support that wants to issue its own IO messages instead of
calling asynPrint should call this and honor the mask settings. Most code will not need
it.

setTraceFile

Set the stream to use for output. A NULL argument means use errlog. Normally set by
the user requesting it via a shell command or by the devTrace device support. If the
current output stream is none of (NULL, stdout, stderr) then the current output stream
is closed before the new stream is used.

getTraceFile

Get the file descriptor to use for output. Device support that wants to issue its own 10
messages instead of calling asynPrintlO should call this and honor the mask settings. In
this case, lock must have been called first. Most code will not need it. If the return
value is 0, then ouput should be directed to errlog.

setTracelOTruncateSize

32

Determines how much data is printed by printlO. In all cases it determines how many
bytes of the buffer are displayed. The actual number of characters printed depends on

asynTrace

asynDriver

the tracelO mask. For example ASYN_TRACEIO_HEX results in 3 characters being
printed for each byte. Normally set by the user requesting it via a shell command or the
devTrace device support.

Get the current truncate size. Called by asynPrintlO. Code that does its own I/O should

getTracelOTruncateSize also support the tracelO mask.

If reason ORed with the current traceMask is not zero, then the message is printed.
print This method is provided for backwards compatibility. The asynPrint macro now calls
printSource().

If reason ORed with the current traceMask is not zero, then the message is printed.
printSource Most code should call asynPrint instead of calling this method. This method is the
same as print() but with the additional file and line arguments.

vprint This is the same as print, but using a va_list as its final argument.

vprintSource This is the same as printSource, but using a va_list as its final argument.

If reason ORed with the current traceMask is not zero then the message is printed. If
len is >0, then the buffer is printed using the tracelO mask and
getTracelOTruncateSize. This method is provided for backwards compatibility. The
asynPrintlO macro now calls printlOSource().

printlO

If reason ORed with the current traceMask is not zero then the message is printed. If
len is >0, then the buffer is printed using the tracelO mask and

printlOSource getTracelOTruncateSize. Most code should call asynPrintIO instead of calling this
method. This method is the same as printlO() but with the additional file and line
arguments.

vprintlO This is the same as printlO, but using a va_list as its final argument.

vprintlOSource This is the same as printlOSource, but using a va_list as its final argument.

Standard Message Based Interfaces

These are interfaces for communicating with message based devices, where message based means that the device
communicates via octet strings, i.e. arrays of 8 bit bytes. Three interfaces are provided: asynOctet, asynOctetBase,
and asynOctetSynclO. asynOctet is generic message based interface. asynOctetBase is an interface used by port
drivers that implement asynOctet. It's primary purpose is to help with interrupt support. asynOctetSynclO
provides a synchronous inteface to asynOctet and can be used by code that is willing to block.

asynOctet

asynOctet describes the methods implemented by drivers that use octet strings for sending commands and
receiving responses from a device.

NOTE: The name octet is used instead of ASCII because it implies that communication is done via 8-bit bytes.

#define ASYN_EOM_CNT 0x0001 /*Request count reached*/
#define ASYN_EOM_EOS 0x0002 /*End of String detected*/
#define ASYN_EOM_END 0x0004 /*End indicator detected*/

typedef void (*interruptCallbackOctet) (void *userPvt, asynUser *pasynUser,
char *data,size_t numchars, int eomReason) ;

typedef struct asynOctetInterrupt {
asynUser *pasynUser;

Standard Message Based Interfaces 33

asynDriver

int addr;

interruptCallbackOctet callback;

void *userPvt;
}asynOctetInterrupt;

#define asynOctetType "asynOctet"
typedef struct asynOctet{

asynStatus

asynStatus

asynStatus

asynStatus

asynStatus

asynStatus

asynStatus

asynStatus

asynStatus

}asynOctet;

(*write) (void *drvPvt,asynUser *pasynUser,

const char *data,size_t numchars,size_t *nbytesTransfered);
(*read) (void *drvPvt,asynUser *pasynUser,

char *data,size_t maxchars,size_t *nbytesTransfered,

int *eomReason) ;

(*flush) (void *drvPvt,asynUser *pasynUser);
(*registerInterruptUser) (void *drvPvt,asynUser *pasynUser,
interruptCallbackOctet callback, wvoid *userPvt,

void **registrarPvt);
(*cancelInterruptUser) (void *drvPvt, asynUser *pasynUser,
void *registrarPvt);
(*setInputEos) (void *drvPvt,asynUser *pasynUser,
const char *eos,int eoslen);
(*getInputEos) (void *drvPvt,asynUser *pasynUser,
char *eos, int eossize, int *eoslen);
(*setOutputEos) (void *drvPvt,asynUser *pasynUser,
const char *eos,int eoslen);
(*getOutputEos) (void *drvPvt,asynUser *pasynUser,
char *eos, int eossize, int *eoslen);

/* asynOctetBase does the following:
calls registerInterface for asynOctet.
Implements registerInterruptUser and cancellnterruptUser
Provides default implementations of all methods.
registerInterruptUser and cancellnterruptUser can be called
directly rather than via queueRequest.

*/

#define asynOctetBaseType "asynOctetBase"
typedef struct asynOctetBase {

asynStatus

(*initialize) (const char *portName,

asynDriverasynInterface *pasynOctetInterface,
int processEosIn, int processEosOut, int interruptProcess);

void

(*callInterruptUsers) (asynUser *pasynUser,void *pasynPvt,

char *data,size_t *nbytesTransfered, int *eomReason);
} asynOctetBase;
epicsShareExtern asynOctetBase *pasynOctetBase;

asynOctet
Send a message to the device. *nbytesTransfered is the number of 8-bit bytes sent to the

write device. Interpose or driver code may add end of string terminators to the message but the
extra characters are not included in *nbytesTransfered.
Read a message from the device. *nbytesTransfered is the number of 8-bit bytes read from
the device. If read returns asynSuccess than eomReason (some combination of

read ASYN_EOM_CNT, ASYN_EOM_EOS, and ASYN_EOM_END)tells why the read
completed. Interpose or driver code may strip end of string terminators from the message.
If it does the first eos character will be replaced by null and the eos characters will not be
included in nbytesTransfered.

flush Flush the input buffer.

34 asynQOctet

asynDriver

Register a user that will be called whenever a new message is received. NOTE: The

registerInterruptUser .
£ P callback must not block and must not call registerInterruptUser or cancellnterruptUser.

cancellnterruptUser |Cancel a registered user.
Set End Of String for input. For example "\n". Note that gpib drivers usually accept at

setlnputEos .

most a one character terminator.
getInputEos Get the current End of String.
setOutputEos Set End Of String for output.
getOutputEos Get the current End of String.

asynOctetBase is an interface and implementation for drivers that implement interface asynOctet. asynOctetBase
implements registerInterruptUser and cancellnterruptUser.

For single device support, it can optionally implement interrupt support. A driver that implements interrupts must
call registerInterruptSource. If it asks asynOctetBase to handle interrupts it calls asynOctetBase:calllnterruptUsers

when it has new data.

For single device support asynOctetBase can optionally call asynInterposeEosConfig to handle end of string
processing for input and/or output.

Any null method in the interface passed to initialize are replaced by a method supplied by asynOctetBase.
For an example of how to use asynOctetBase look at asyn/testApp/src/echoDriver.c

asynOctetBase

After a driver calls registerPort it can call:
pasynOctetBase->initialize (...

Any null methods in the asynInterface are replaced by default implementations. If the port is
initialize not multi-device and either processEosIn or processEosOut is specified,
asynlnterposeEosConfig is called. If the port is not multi-device and interruptProcess is
specified, then whenever read is called, asynBase calls all the registered interrupt users.
asynOctetBase can not implement processEosIn, processEosOut, and interruptProcess if the
port is a multi-device port. Since this method is called only during initialization it can be
called directly rather than via queueRequest.

calllnterruptUsers [Calls the callbacks registered via registerInterruptUser.

asynOctetSynclO

asynOctetSynclO provides a convenient interface for software that needs to perform "synchronous" I/O to an asyn
device, i.e. that starts an I/O operation and then blocks while waiting for the response. The code does not need to
handle callbacks or understand the details of the asynManager and asynOctet interfaces. Examples include motor
drivers running in their own threads, SNL programs, and the shell commands described later in this document.

typedef struct asynOctetSyncIO {
asynStatus (*connect) (const char *port, int addr,
asynUser **ppasynUser, const char *drvInfo);
asynStatus (*disconnect) (asynUser *pasynUser);
asynStatus (*write) (asynUser *pasynUser,
char const *buffer, size_t buffer_len,
double timeout,size_t *nbytesTransfered);

asynOctetSynclO 35

asynStatus

asynStatus

asynStatus
asynStatus

asynStatus

asynStatus

asynStatus

asynStatus

asynStatus

asynStatus

asynStatus
asynStatus

asynStatus

asynStatus

asynStatus

asynDriver

(*read) (asynUser *pasynUser, char *buffer, size_t buffer_ len,

double timeout, size_t *nbytesTransfered, int *eomReason);
(*writeRead) (asynUser *pasynUser,

const char *write_buffer, size_t write_buffer_ len,

char *read_buffer, size_t read_buffer_len,

double timeout,

size_t *nbytesOut, size_t *nbytesIn,
(*flush) (asynUser *pasynUser);
(*setInputEos) (asynUser *pasynUser,

const char *eos,int eoslen);
(*getInputEos) (asynUser *pasynUser,

char *eos, int eossize, int *eoslen);
(*setOutputEos) (asynUser *pasynUser,

const char *eos,int eoslen);
(*getOutputEos) (asynUser *pasynUser,

char *eos, int eossize, int *eoslen);
(*writeOnce) (const char *port, int addr,

char const *buffer, size_t buffer_len, double timeout,

size_t *nbytesTransfered, const char *drvInfo);
(*readOnce) (const char *port, int addr,

char *buffer, size_t buffer_len, double timeout,

size_t *nbytesTransfered, int *eomReason,
(*writeReadOnce) (const char *port, int addr,

const char *write_buffer, size_t write_buffer_ len,

char *read_buffer, size_t read_buffer_len,

double timeout,

size_t *nbytesOut, size_t *nbytesIn,

const char *drvInfo);
(*flushOnce) (const char *port, int addr,const char *drvInfo);
(*setInputEosOnce) (const char *port, int addr,

const char *eos,int eoslen,const char *drvInfo);
(*getInputEosOnce) (const char *port, int addr,

char *eos, int eossize, int *eoslen,const char *drvInfo);
(*setOutputEosOnce) (const char *port, int addr,

const char *eos,int eoslen,const char *drvInfo);
(*getOutputEosOnce) (const char *port, int addr,

char *eos, int eossize, int *eoslen,const char *drvInfo);

int *eomReason) ;

int *eomReason,

} asynOctetSyncIO;
epicsShareExtern asynOctetSyncIO *pasynOctetSyncIO;

const char *drvInfo);

asynOctetSynclO

connect Connects to an asyn port and address, returns a pointer to an asynUser structure.

disconnect Disconnect. This frees all resources allocated by connect.

write Calls asynOctet->write and waits for the operation to complete or time out.

read Calls asynOctet->read. Waits for the operation to complete or time out.

writeRead Calls pasynO.ctet—>ﬂush, pasynOctet->write, and asynOctet->read. Waits for the operations to
complete or time out.

flush Calls pasynOctet->flush

setInputEos Calls pasynOctet->setInputEos

getlnputEos Calls pasynOctet->getInputEos

setOutputEos [Calls pasynOctet->setOutputEos

getOutputEos |Calls pasynOctet->getOutputEos

writeOnce This does a connect, write, and disconnect.

readOnce This does a connect, read, and disconnect.

36 asynOctetSynclO

asynDriver

readOnce This does a connect, read, and disconnect.

writeReadOnce |This does a connect, writeRead, and disconnect.

End of String Support

asynOctet provides methods for handling end of string (message) processing. It does not specify policy. Device
support code, interpose layers, or low level drivers can all handle EOS processing. An application developer must
decide what policy will be followed for individual devices. The policy will be determined by the device, the
device support, and the driver.

Standard Register Based Interfaces

Introduction
This section descibes interfaces for register based devices. Support is provided for:

e Int32 - registers appear as 32 integers

® Int64 - registers appear as 64 integers

¢ Ulnt32Digital - registers appear a 32 bit unsigned integers and masks can be used to address specific bits.
¢ Float64 - registers appear as double precision floats.

¢ Int8Array - Arrays of 8 bit integers.

¢ Int16Array - Arrays of 16 bit integers.

¢ Int32Array - Arrays of 32 bit integers.

¢ Int64Array - Arrays of 64 bit integers.

¢ Float32Array - Arrays of single precision floats.

¢ Float6b4Array - Arrays of double precision floats.

® Enum - Arrays of strings, integer values and integer severities.
¢ GenericPointer - void* pointer.

Note that hardware may have registers with smaller sizes, e.g. 16 bit registers. The standard interfaces can still be
used by setting the unused bits to 0.

For all of these interfaces a default implementation and a synchronous inplementation are provided. Lets use Int32
as an example.

¢ asynInt32 - An interface with methods: read, write, getBounds, registerInterruptUser, and
cancellnterruptUser.
¢ asynInt32Base - An interface used by drivers that implement asynInt32. It also has an implementation
that:
¢ registers the asynInt32 interface
¢ has default methods for read, write, and getBounds. A null method in the interface passed to
initialize is replaced by a method implemented by asynInt32Base.
¢ implements registerInterruptUser and cancellnterruptUser. The caller should leave these methods
null because asynInt32Base always replaces them by it's implementation.
Drivers that implement asynInt32 normally call asynInt32Base:initialize. It implements
registerInterruptUser and cancellnterruptUser. If the driver provides interrupt support it must:
¢ Call pasynInt32Base->initialize
¢ Call pasynManager->registerInterruptSource
¢ Interact with asynManager to call the users that have registered with
asynInt32Base:registerInterruptUser. The driver calls users when there is new data available.

End of String Support 37

asynDriver

asyn/testEpics App/src/int32Driver.c provides an example of how to provide support for interrupts.
¢ asynInt32SynclO - A synchronous interface to asynInt32

addr - What does it mean for register based interfaces?
Low level register based drivers are normally multi-device. The meaning of addr is:

¢ Int32 - The driver supports an array of Int32 values. addr selects an array element. For example a 16
channel ADC would support addr O through 15.

¢ Int64 - The driver supports an array of Int64 values. addr selects an array element.

¢ Int8Array - Each addr is an array of Int8 values.

¢ Int16Array - Each addr is an array of Int16 values.

¢ Int32Array - Each addr is an array of Int32 values.

¢ Int64Array - Each addr is an array of Int64 values.

® Float64 - The driver supports an array of Float64 values. addr selects an array element.

¢ Float32Array - Each addr is an array of Float32 values.

¢ Float64Array - Each addr is an array of Float64 values.

e Ulnt32Digital - The driver supports an array of Ulnt32 values. addr selects an array element. For example
a 128 bit digital I/O module appears as an array of four Ulnt32 registers.

Example Drivers
Two examples of drivers that might implement and use the interfaces are:
¢ Analog to Digital Convertor.

An example is a 16 channel ADC. The driver implements interfaces asynCommon and asynInt32. It uses
interface asynInt32Base. It can call asynManager:interruptStart and asynManager:interruptEnd to support
interrupts. It can use pasynUser->reason and addr to decide which callbacks to call.
asyn/testEpicsApp/int32Driver.c is a soft example of how to implement a driver that implements
asynInt32 and also asynFloat64.

e Digital I/O module

An example is a 64 bit combination digital input and digital output module. The driver implements
interfaces asynCommon and asynUInt32Digital. It uses interface asynUInt32DigitalBase. It can call
asynManager:interruptStart and asynManager:interruptEnd to support interrupts. It can use reason, mask,
and addr to decide which callbacks to call. asyn/testEpicsApp/uint32DigitalDriver.c is a soft example of a
driver that implements asynUInt32Digital.

asynintXX (XX=32 or 64)

asynIntXX describes the methods implemented by drivers that use integers for communicating with a device.

typedef void (*interruptCallbackIntXX) (void *userPvt, asynUser *pasynUser,
epicsIntXX data);
typedef struct asynIntXXInterrupt {
int addr;
asynUser *pasynUser;
interruptCallbackIntXX callback;
void *userPvt;
} asynIntXXInterrupt;
#define asynIntXXType "asynIntXX"

38 Introduction

asynDriver

typedef struct asynIntXX {
asynStatus (*write) (void *drvPvt, asynUser *pasynUser, epicsIntXX value);
asynStatus (*read) (void *drvPvt, asynUser *pasynUser, epicsIntXX *value);
asynStatus (*getBounds) (void *drvPvt, asynUser *pasynUser,

epicsIntXX *low, epicsIntXX *high);

asynStatus (*registerInterruptUser) (void *drvPvt,asynUser *pasynUser,

interruptCallbackIntXX callback, void *userPvt,
void **registrarPvt);

asynStatus (*cancellnterruptUser) (void *drvPvt, asynUser *pasynUser,

} asynIntXX;

void *registrarPvt);

/* asynIntXXBase does the following:
calls registerInterface for asynIntXX.
Implements registerInterruptUser and cancellnterruptUser
Provides default implementations of all methods.
registerInterruptUser and cancellnterruptUser can be called
directly rather than via queueRequest.

*/

#define asynIntXXBaseType "asynIntXXBase"
typedef struct asynIntXXBase {
asynStatus (*initialize) (const char *portName,

} asynIntXXBase;

asynInterface *pintXXInterface);

epicsShareExtern asynIntXXBase *pasynIntXXBase;

asynIntXX

write Write an integer value to the device.

read Read an integer value from the device.

getBounds Get the bounds. For example a 16 bit ADC might set low=-32768 and high = 32767.

registerInterruptUser

Registers a callback that will be called whenever new data is available. Since it can be
called directly rather than via a queueRequest this method must not block.

cancellnterruptUser

Cancels the callback. Since it can be called directly rather than via a queueRequest this
method must not block.

asynIntXXBase is an interface and associated code that is used by drivers that implement interface asynIntXX.
asynIntXXBase provides code to handle registerInterruptUser/cancellnterruptUser. The driver must itself call the
callbacks via calls to asynManager:interruptStart and asynManager:interruptEnd.

asynIntXXBase

After a driver calls registerPort it can call:
initialize |pasynIntXXBase->initialize (...

Any null methods in the asynlnterface are replaced by default implementations.

The default implementation of each method does the following:

asynIntXX

write

|Rep0rts an error "write is not supported" and returns asynError

asynIntXX (XX=32 or 64)

39

asynDriver

read Reports an error "read is not supported" and returns asynError
Reports an error "getBounds is not supported" and returns
getBounds p £ pp
asynError
registerInterruptUser registers an interrupt callback.
cancellnterruptUser Cancels the callback

asynintXXSynclO (XX=32 or 64)

asynIntXXSynclO describes a synchronous interface to asynIntXX. The code that calls it must be willing to
block.

#define asynIntXXSyncIOType "asynIntXXSyncIO"
typedef struct asynIntXXSyncIO {
asynStatus (*connect) (const char *port, int addr,
asynUser **ppasynUser, const char *drvInfo);
asynStatus (*disconnect) (asynUser *pasynUser);
asynStatus (*write) (asynUser *pasynUser, epicsIntXX value,double timeout);
asynStatus (*read) (asynUser *pasynUser, epicsIntXX *pvalue,double timeout);
asynStatus (*getBounds) (asynUser *pasynUser,
epicsIntXX *plow, epicsIntXX *phigh);
asynStatus (*writeOnce) (const char *port, int addr,
epicsIntXX value,double timeout, const char *drvInfo);
asynStatus (*readOnce) (const char *port, int addr,
epicsIntXX *pvalue,double timeout, const char *drvInfo);
asynStatus (*getBoundsOnce) (const char *port, int addr,
epicsIntXX *plow, epicsIntXX *phigh,const char *drvInfo);
} asynIntXXSyncIO;
epicsShareExtern asynIntXXSyncIO *pasynIntXXSyncIO;

asynIntXXSynclO

connect Connects to a port and address, returns a pointer to an asynUser.

disconnect Disconnect. This frees all resources allocated by connect.

write Calls pasynIntXX->write and waits for the operation to complete or time out.

read Calls pasynIntXX->read and waits for the operation to complete or time out.
getBounds Calls pasynIntXX->getBounds and waits for the operation to complete or time out.
writeOnce This does a connect, write, and disconnect.

readOnce This does a connect, read, and disconnect.

getBoundsOnce |This does a connect, getBounds, and disconnect.

asynUInt32Digital

asynUInt32Digital describes the methods for communicating via bits of an Int32 register.

typedef enum {
interruptOnZeroToOne, interruptOnOneToZero, interruptOnBoth
} interruptReason;

typedef void (*interruptCallbackUInt32Digital) (void *userPvt,
asynUser *pasynUser, epicsUInt32 data);
typedef struct asynUInt32Digitallnterrupt {
epicsUInt32 mask;
int addr;
asynUser *pasynUser;
interruptCallbackUInt32Digital callback;

40 asynIntXXSynclO (XX=32 or 64)

void *userPvt;

asynDriver

} asynUInt32DigitalInterrupt;
#define asynUInt32DigitalType "asynUInt32Digital"
typedef struct asynUInt32Digital {
asynStatus (*write) (void *drvPvt, asynUser *pasynUser,
epicsUInt32 value, epicsUInt32 mask);
asynStatus (*read) (void *drvPvt, asynUser *pasynUser,
epicsUInt32 *value, epicsUInt32 mask);
asynStatus (*setInterrupt) (void *drvPvt, asynUser *pasynUser,
epicsUInt32 mask, interruptReason reason);
asynStatus (*clearInterrupt) (void *drvPvt, asynUser *pasynUser,
epicsUInt32 mask);
asynStatus (*getInterrupt) (void *drvPvt, asynUser *pasynUser,
epicsUInt32 *mask, interruptReason reason);
asynStatus (*registerInterruptUser) (void *drvPvt, asynUser *pasynUser,
interruptCallbackUInt32Digital callback,void *userPvt,epicsUInt32 mask,
void **registrarPvt);
asynStatus (*cancelInterruptUser) (void *drvPvt, asynUser *pasynUser,

void *registrarPvt);

} asynUInt32Digital;

/* asynUInt32DigitalBase does the following:
calls registerInterface for asynUInt32Digital.
Implements registerInterruptUser and cancellnterruptUser
Provides default implementations of all methods.
registerInterruptUser and cancellnterruptUser can be called
directly rather than via queueRequest.

*/

#define asynUInt32DigitalBaseType "asynUInt32DigitalBase"
typedef struct asynUInt32DigitalBase {
asynStatus (*initialize) (const char *portName,

asynInterface *pasynUInt32DigitallInterface);

} asynUInt32DigitalBase;
epicsShareExtern asynUInt32DigitalBase *pasynUInt32DigitalBase;

asynUInt32Digital

write Modify the bits specified by mask with the corresponding bits in value.

read Read the bits specified by mask into value. The other bits of value will be set to 0.

setInterrupt Set the bits specified by mask to interrupt for reason.

clearInterrupt Clear the interrupt bits specified by mask.

getInterrupt Set each bit of mask that is enabled for reason.
Register a callback that will be called whenever the driver detects a change in any of the

registerInterruptUser |bits specified by mask. Since it can be called directly rather than via a queueRequest this
method must not block.

cancellnterruptUser Cancels the regis'tered callback. Since it can be called directly rather than via a
queueRequest this method must not block.

asynUInt32DigitalBase is an interface and associated code that is used by drivers that implement interface
asynUInt32Digital. asynUInt32DigitalBase provides code to implement registerInterruptUser and

cancellnterruptUser.

asynUInt32DigitalBase

asynUInt32Digital

asynDriver

After a driver calls registerPort it can call:
initialize |pasynUInt32DigitalBase->initialize(...

Any null methods in the asynInterface are replaced by default implementations.

The default implementation of each method does the following:

asynUInt32Digital

write Reports an error "write is not supported" and returns asynError

read Reports an error "read is not supported" and returns asynError
setInterrupt Reports an error "setInterrupt is not supported" and returns asynError
clearInterrupt Reports an error "clearInterrupt is not supported” and returns asynError
getInterrupt Reports an error "getInterrupt is not supported” and returns asynError

registerInterruptUser

to asynManager:interruptStart and asynManager:interruptEnd.

cancellnterruptUser |Cancels the callback

asynUInt32DigitalSynclO

asynUInt32DigitalSynclO describes a synchronous interrace to asynUInt32Digital. The code that calls it must be

willing to block.

#define asynUInt32DigitalSyncIOType "asynUInt32DigitalSyncIO"
typedef struct asynUInt32DigitalSyncIO {

asynStatus

asynStatus
asynStatus

asynStatus

asynStatus

asynStatus

asynStatus

asynStatus

asynStatus

asynStatus

asynStatus

asynStatus

(*connect) (const char *port, int addr,
asynUser **ppasynUser, const char *drvInfo);
(*disconnect) (asynUser *pasynUser);
(*write) (asynUser *pasynUser,
epicsUInt32 value,epicsUInt32 mask,double timeout);
(*read) (asynUser *pasynUser,
epicsUInt32 *pvalue,epicsUInt32 mask,double timeout);
(*setInterrupt) (asynUser *pasynUser,
epicsUInt32 mask, interruptReason reason,double timeout);
(*clearInterrupt) (asynUser *pasynUser,
epicsUInt32 mask,double timeout);
(*getInterrupt) (asynUser *pasynUser,
epicsUInt32 *mask, interruptReason reason,double timeout);
(*writeOnce) (const char *port, int addr,
epicsUInt32 value,epicsUInt32 mask,double timeout,
const char *drvInfo);
(*readOnce) (const char *port, int addr,
epicsUInt32 *pvalue,epicsUInt32 mask,double timeout,
const char *drvInfo);
(*setInterruptOnce) (const char *port, int addr,
epicsUInt32 mask, interruptReason reason,double timeout,
const char *drvInfo);
(*clearInterruptOnce) (const char *port, int addr,
epicsUInt32 mask,double timeout,const char *drvInfo);
(*getInterruptOnce) (const char *port, int addr,
epicsUInt32 *mask, interruptReason reason,double timeout,
const char *drvInfo);

} asynUInt32DigitalSyncIO;
epicsShareExtern asynUInt32DigitalSyncIO *pasynUInt32DigitalSyncIO;

42

asynUInt32DigitalSynclO

registers the interrupt user. The low level driver must call the registered callbacks via calls

asynUInt32DigitalSynclO

asynDriver

connect Connects to a port and address, returns a pointer to an asynUser structure.
disconnect Disconnect. This frees all resources allocated by connect.
write Calls pasynUInt32Digital->write and waits for the operation to complete or time
out.
read Calls pasynUInt32Digital->read and waits for the operation to complete or time
out.
Calls pasynUInt32Digital->setInterrupt and waits for the operation to complete
setInterrupt .
or time out.
Calls pasynUInt32Digital->clearInterrupt and waits for the operation to complete
clearInterrupt .
or time out.
Calls pasynUInt32Digital->getInterrupt and waits for the operation to complete
getInterrupt pasy £ £ p p p

or time out.

writeOnce,...,getInterruptOnce

Does a connect, (write,...,getInterrupt), and disconnect.

asynFloat64

asynFloat64 describes the methods for communicating via IEEE double precision float values.

typedef void (*interruptCallbackFloat64) (void *userPvt, asynUser *pasynUser,
epicsFloat64 data);
typedef struct asynFloaté64Interrupt {

asynUser *pasynUser;
int addr;

interruptCallbackFloat64 callback;

void *userPvt;
} asynFloat64Interrupt;

#define asynFloat64Type "asynFloat64"

typedef struct asynFloat64 ({
asynStatus (*write) (void *drvPvt, asynUser *pasynUser, epicsFloat64 value);
asynStatus (*read) (void *drvPvt, asynUser *pasynUser, epicsFloat64 *value);
asynStatus (*registerInterruptUser) (void *drvPvt, asynUser *pasynUser,

interruptCallbackFloat64 callback, void *userPvt,void **registrarPvt);
asynStatus (*cancellnterruptUser) (void *drvPvt, asynUser *pasynUser,
void *registrarPvt);

} asynFloat64;

/* asynFloat64Base does the following:
calls registerInterface for asynFloaté64.
Implements registerInterruptUser and cancellnterruptUser
Provides default implementations of all methods.
registerInterruptUser and cancellnterruptUser can be called
directly rather than via queueRequest.

*/

#define asynFloat64BaseType "asynFloat64Base"
typedef struct asynFloat64Base {
asynStatus (*initialize) (const char *portName,

} asynFloat64Base;

asynInterface *pasynFloaté64Interface);

epicsShareExtern asynFloat64Base *pasynFloat64Base;

asynFloat64

asynFloat64

43

asynDriver

write Write a value.

read Read a value.

Register a callback that is called whenever new data is available. Since it can be called

registerinterruptUser directly rather than via a queueRequest this method must not block.

Cancel the callback. Since it can be called directly rather than via a queueRequest this
cancellnterruptUser

method must not block.
asynFloat64Base

After a driver calls registerPort it can call:

initialize |pasynFloat64Base—>initialize (...

Any null methods in the asynInterface are replaced by default implementations.
The default implementation of each method does the following:

asynFloat64
write Reports an error "write is not supported" and returns asynError
read Reports an error "read is not supported” and returns asynError
. registers the interrupt user. The low level driver must call the registered callbacks via calls
registerInterruptUser . .
to asynManager:interruptStart and asynManager:interruptEnd.
cancellnterruptUser |Cancels the callback

asynFloat64SynclO

asynFloat64SynclO describes a synchronous interrace to asynFloat64. The code that calls it must be willing to
block.

#define asynFloat64SyncIOType "asynFloat64SyncIO"
typedef struct asynFloat64SyncIO {
asynStatus (*connect) (const char *port, int addr,
asynUser **ppasynUser, const char *drvInfo);
asynStatus (*disconnect) (asynUser *pasynUser);
asynStatus (*write) (asynUser *pasynUser,epicsFloat64 value,double timeout);
asynStatus (*read) (asynUser *pasynUser,epicsFloat64 *pvalue,double timeout);
asynStatus (*writeOnce) (const char *port, int addr,
epicsFloat64 value,double timeout,const char *drvInfo);
asynStatus (*readOnce) (const char *port, int addr,
epicsFloat64 *pvalue,double timeout, const char *drvInfo);
} asynFloat64SyncIO;
epicsShareExtern asynFloat64SyncIO *pasynFloat64SyncIO;

asynFloat64SynclO

connect Connects to a port and address, returns a pointer to an asynUser structure.

disconnect |Disconnect. This frees all resources allocated by connect.

write Calls pasynFloat64->write and waits for the operation to complete or time out.

read Calls pasynFloat64->read and waits for the operation to complete or time out.

writeOnce |This does a connect, write, and disconnect.

readOnce |This does a connect, read, and disconnect.

44 asynFloat64SynclO

asynDriver

asynXXXArray (XXX=Int8, Int16, Int32, Int64, Float32 or Float64)

asynXXXArray describes the methods for communicating via 8, 16, 32, or 64-bit integers, or 32 or 64-bit IEEE

float values.

typedef void (*interruptCallbackXXXArray) (
void *userPvt, asynUser *pasynUser,
epicsXXX *data, size_t nelements);

typedef struct asynXXXArrayInterrupt {

asynUser *pasynUser;

int addr;

interruptCallbackXXXArray callback;

void *userPvt;
} asynXXXArrayInterrupt;
#define asynXXXArrayType "asynXXXArray"
typedef struct asynXXXArray {

asynStatus (*write) (void *drvPvt, asynUser *pasynUser,

epicsXXX *value, size_t nelements);
asynStatus (*read) (void *drvPvt, asynUser *pasynUser,
epicsXXX *value, size_t nelements, size_t *nIn);
asynStatus (*registerInterruptUser) (void *drvPvt, asynUser *pasynUser,
interruptCallbackXXXArray callback,
void *userPvt,void **registrarPvt);
asynStatus (*cancelInterruptUser) (void *drvPvt, asynUser *pasynUser,
void *registrarPvt);

} asynXXXArray;

/* asynXXXArrayBase does the following:
calls registerInterface for asynXXXArray.
Implements registerInterruptUser and cancellnterruptUser
Provides default implementations of all methods.
registerInterruptUser and cancellnterruptUser can be called
directly rather than via queueRequest.

*/

#define asynXXXArrayBaseType "asynXXXArrayBase"
typedef struct asynXXXArrayBase {
asynStatus (*initialize) (const char *portName,
asynInterface *pXXXArrayInterface);
} asynXXXArrayBase;
epicsShareExtern asynXXXArrayBase *pasynXXXArrayBase;

asynXXXArray
write Write an array of values.
read Read an array of values.

registerInterruptUser |Register a callback that is called whenever new data is available.

cancellnterruptUser |Cancel the callback

asynXXXArrayBase

After a driver calls registerPort it can call:

initialize |pasynXXXArrayBase->initialize (...

Any null methods in the asynInterface are replaced by default implementations.

asynXXXArray (XXX=Int8, Int16, Int32, Int64, Float32 or Float64)

45

asynDriver

The default implementation of each method does the following:

asynXXXArrayBase
write Reports an error "write is not supported" and returns asynError
read Reports an error "read is not supported" and returns asynError

registerInterruptUser |Registers an interrupt callback.

cancellnterruptUser |Cancels the callback

asynXXXArraySynclO

asynXXXArraySynclO describes a synchronous interface to asynXXXArray. The code that calls it must be
willing to block.

#define asynXXXArraySyncIOType "asynXXXArraySyncIO"
typedef struct asynXXXArraySyncIO {
asynStatus (*connect) (const char *port, int addr,
asynUser **ppasynUser, const char *drvInfo);
asynStatus (*disconnect) (asynUser *pasynUser);
asynStatus (*write) (asynUser *pasynUser, epicsXXX *pvalue,size_t nelem,double timeout);
asynStatus (*read) (asynUser *pasynUser, epicsXXX *pvalue,size_t nelem,size_t *nIn,double timeout);
asynStatus (*writeOnce) (const char *port, int addr,
epicsXXX *pvalue,size_t nelem,double timeout, const char *drvInfo);
asynStatus (*readOnce) (const char *port, int addr,
epicsXXX *pvalue,size_t nelem,size_t *nIn,double timeout, const char *drvInfo);
} asynXXXArraySyncIO;
epicsShareExtern asynXXXArraySyncIO *pasynXXXArraySyncIO;

asynXXXArraySynclO

connect Connects to a port and address, returns a pointer to an asynUser.

disconnect Disconnect. This frees all resources allocated by connect.

write Calls pasynX XX Array->write and waits for the operation to complete or time out.
read Calls pasynXXXArray->read and waits for the operation to complete or time out.
writeOnce This does a connect, write, and disconnect.

readOnce This does a connect, read, and disconnect.

getBoundsOnce |This does a connect, getBounds, and disconnect.

asynEnum

asynEnum describes the methods implemented by drivers to define the enum strings, values, and severities for a
device.

This interface is typically used by drivers to set the enum strings and values for EPICS bi, bo, mbbi, and mbbo
records. The strings[] are used to define the ZNAM and ONAM fields in bi and bo records, and the ZRST, ONST,
...FFST fields in mbbi and mbbo records. The integer values[] are ignored for bi and bo records, since these
always have the values of 0 and 1 corresponding to the ZNAM and ONAM states. The integer values[] are used to
assign the ZRVL, ONVL, ... FFVL fields for mbbi and mbbo records. The integer severities[] are used to set the
ZSV and OSV fields of bi and bo records, and the ZRSV, ONSV, ... FFSV fields of mbbi and mbbo records. The
nelements parameter in the write() and read() functions is used by the client to specify the dimensions of the

46 asynXXXArraySynclO

asynDriver

strings[], values[], and severities[] arrays. The driver must not access these arrays beyond element nElements-1.
The nln parameter in the read() is used by the driver to set the actual number of value enum strings, values, and
severities. There is no size limitation on nElements imposed by the asynEnum interface. However, the bi and bo
records limit nElements to 2, and mbbi and mbbo records limit nElements to 16. There is no size limitation on the
strings imposed by the asynEnum interface. However, the string fields in the bi, bo, mbbo, and mbbi records are
currently limited to 26 characters.

Clients must ensure that the char* pointers passed in strings[] in the read() function are either set to NULL or
have been allocated by malloc(). The driver read() function must first call free() if a string pointer contains a
non-NULL value. The driver must then allocate the strings using malloc() before copying the current enum string
values to them.

typedef void (*interruptCallbackEnum)
void *userPvt, asynUser *pasynUser,
char *strings[], int values([], int severities[], size_t nelements);
typedef struct asynEnumInterrupt {
asynUser *pasynUser;
int addr;
interruptCallbackEnum callback;
void *userPvt;
} asynEnumInterrupt;
#define asynEnumType "asynEnum"
typedef struct asynEnum {
asynStatus (*write) (void *drvPvt, asynUser *pasynUser,
char *strings[], int values[], int severities[], size_t nelements);
asynStatus (*read) (void *drvPvt, asynUser *pasynUser,

char *strings[], int values[], int severities[], size_t nelements, size_t *nI

asynStatus (*registerInterruptUser) (void *drvPvt, asynUser *pasynUser,
interruptCallbackEnum callback, void *userPvt,
void **registrarPvt);
asynStatus (*cancelInterruptUser) (void *drvPvt, asynUser *pasynUser,
void *registrarPvt);
} asynEnum;

/* asynEnumBase does the following:
calls registerInterface for asynEnum.
Implements registerInterruptUser and cancellnterruptUser
Provides default implementations of all methods.
registerInterruptUser and cancellnterruptUser can be called
directly rather than via queueRequest.

*/

#define asynEnumBaseType "asynEnumBase"
typedef struct asynEnumBase {
asynStatus (*initialize) (const char *portName,
asynInterface *pEnumlInterface);
} asynEnumBase;
epicsShareExtern asynEnumBase *pasynEnumBase;

asynEnum
write Writes the enum strings, enum values and enum severities to the driver.
read Reads the enum strings, enum values and enum severities to the driver.

Registers a callback that will be called whenever there are new enum strings, values and
registerInterruptUser |severities. Since it can be called directly rather than via a queueRequest this method must
not block.

asynEnum 47

asynDriver

cancellnterruptUser

method must not block.

Cancels the callback. Since it can be called directly rather than via a queueRequest this

asynEnumBase is an interface and associated code that is used by drivers that implement interface asynEnum.
asynEnumBase provides code to handle registerInterruptUser/cancellnterruptUser. The driver must itself call the
callbacks via calls to asynManager:interruptStart and asynManager:interruptEnd.

asynEnumBase

After a driver calls registerPort it can call:
initialize |pasynEnumBase->initialize (...

Any null methods in the asynInterface are replaced by default implementations.

The default implementation of each method does the following:

