
asyn - asyn Record

Table of Contents
 asyn Record..1

 Contents...1
 Overview..1
 Device Address Control Fields..2
 Input/Output Control Fields...3
 Output Control Fields for asynOctet..4
 Input Control Fields for asynOctet...5
 Input/Output Control Fields for Register Interfaces..7
 Serial Control Fields..8
 IP Control Fields..10
 GPIB Control Fields...10
 Trace Control Fields...11
 Connection Management Fields...12
 Error Status Fields..13
 Private Fields..13
 Record Processing..13
 Obsolete serial and GPIB records..14
 medm screens...14

 Main control screen, asynRecord.adl..14
 asynOctet I/O screen, asynOctet.adl..15
 asyn register device I/O screen, asynRegister.adl...16
 Serial port setup screen, asynSerialPortSetup.adl...16
 IP port setup screen, asynIPPortSetup.adl...17
 GPIB setup screen, asynGPIBSetup.adl..17

 Example #1..18
 Example #2..20

asyn - asyn Record

i

asyn - asyn Record

ii

asyn Record
Mark Rivers and Marty Kraimer

Contents

Overview•
Device Address Control Fields•
Input/Output Control Fields•
Output Control Fields for asynOctet•
Input Control Fields for asynOctet•
Input/Output Control Fields for Register Interfaces•
Serial Control Fields•
IP Control Fields•
GPIB Control Fields•
Trace Control Fields•
Connection Management Fields•
Error Status Fields•
Private Fields•
Record Processing•
Obsolete serial and GPIB records•
medm screens•
Example 1•
Example 2•

Overview

The asyn record is designed to provide access to nearly all of the features of the asyn facility. It includes the
ability to:

Perform I/O to any asyn device that supports the asynOctet, asynInt32, asynUInt32Digital, and/or
asynFloat64 interfaces.

•

Allow EPICS to communicate with a new device without rebooting the IOC, i.e. without writing any C
code or changing the database. This allows Channel Access clients to communicate with devices for
which no EPICS device support exists.

•

In combination with the scalcout record to format output strings and to parse response strings, eliminate
the need for C device support code in many applications.

•

Dynamically change the asyn device "port" and "address", so a single asyn record can be switched from
talking to one device to another at run time.

•

Dynamically change the asyn interface being used for I/O.•
Manage the connection state of a device, i.e. connect/disconnect, enable/disable,
autoConnect/noAutoConnect..

•

Provide access to asynTrace, controlling debugging output for any asyn device.•
Control the the baud rate, parity, etc. for serial ports whose drivers support the asynOption interface.•
Control the GPIB address and execute global and addressed commands for GPIB devices.•

For the asynOctet interface there are two output fields, AOUT (ASCII Output) and BOUT (Byte Output). The
OFMT (Output Format) field is used to select one of these fields or the other as the output source to the device.
Similarly, there are two input fields, AINP (ASCII Input) and BINP (Byte Input). The IFMT (Input Format) field

 asyn Record 1

is used to select one or the other as the destination of data sent from the device. The ASCII fields are type
DBF_STRING, and are very convenient for typical communication with many devices. They permit, for example,
medm screens where the user can type a string and observe the response from the instrument. The ASCII fields,
however are limited to 40 characters in length, and cannot be used to read or write binary data. The byte input and
output fields are DBF_CHAR arrays, and can be used to transfer large blocks of arbitrary data, either ASCII or
binary.

In the "Access" columns in the field description tables:

R Read only
R/W Read and write are allowed
R/W* Read and write are allowed; write triggers record processing if the record's SCAN field is set to

"Passive".
N No access allowed

Device Address Control Fields

Name Access Prompt Data type Description

PORT R/W "asyn port" DBF_STRING The asyn "port" name. This field can be
changed at any time to connect the record to
another asyn device.

ADDR R/W "asyn address" DBF_LONG The asyn address. This field can be changed
at any time to connect the record to another
asyn device.

PCNCT R/W "Port
Connect/Disconnect" DBF_MENU

Disconnects or connects the port. Choices are
"Disconnect" and "Connect". The value read
reflects whether there is currently a valid
connection to a port.

DRVINFO R/W "Driver information" DBF_STRING

A string that is passed to the driver with
asynDrvUser->create(), assuming that the
asynDrvUser interface exists. The driver will
update pasynUser->reason and/or
pasynUser->drvUser as a result. If
pasynUser->reason is changed then the
asynRecord REASON field will be updated.

REASON R/W "Reason or
command" DBF_LONG

A integer "reason" or "command" that is
typically used to tell the driver what item to
read or write. This value is updated when
connecting to the driver, using the DRVINFO
field. It can be changed later without
reconnecting to the driver. If REASON is
changed then the DRVINFO field will be set
to an empty string.

The asyn record does not have traditional INP or OUT fields for input and output links. Rather it provides the
PORT and ADDR fields to allow dynamically changing what asyn device the record is connected to.

asyn - asyn Record

2 Overview

Writing to the PORT, ADDR or DRVINFO fields causes the asyn record to disconnect from the current device
and connect to the specified asyn port and address. This permits a single asyn record to be used to control any
asyn device. Writing to these fields does not cause any I/O to be done.

Note that since writing to the PORT, ADDR, or DRVINFO fields cause the record to automatically attempt to
connect to the port, it is usually not necessary to write to the PCNCT field to connect to the port. The PCNCT
field is useful for determining if the port is connected, and for forcing a disconnect if desired.

Input/Output Control Fields

Name Access Prompt Data type Description

VAL R/W "Value field
(unused)"

DBF_STRING This field is unused. The functions normally
assigned to the VAL field in many records are
performed by the AOUT, BOUT, AINP, BINP,
I32OUT, I32INP, UI32OUT, UI32INP,
F64OUT, and F64INP fields in the asyn record.

TMOD R/W "Transaction
mode"

DBF_MENU The type of I/O transaction to perform when the
record is processed. The choices are:
"Write/Read" (default)
"Write"
"Read"
"Flush"
"NoI/O"

IFACE R/W "Interface" DBF_MENU

The interface to use for the I/O transfer when the
record processes. The choices are:
"asynOctet" (default)
"asynInt32"
"asynUInt32Digital"
"asynFloat64"

OCTETIV R "Octet Is Valid" DBF_LONG This field is (1,0) if the driver (does,does not)
support the asynOctet interface.

I32IV R "Int32 Is Valid" DBF_LONG This field is (1,0) if the driver (does,does not)
support the asynInt32 interface.

UI32IV R "UInt32Digital
Is Valid"

DBF_LONG This field is (1,0) if the driver (does,does not)
support the asynUInt32Digital interface.

F64IV R "Float64 Is
Valid"

DBF_LONG This field is (1,0) if the driver (does,does not)
support the asynFloat64 interface.

OPTIONIV R "Option Is
Valid"

DBF_LONG This field is (1,0) if the driver (does,does not)
support the asynOption interface.

GPIBIV R "GPIB Is Valid" DBF_LONG This field is (1,0) if the driver (does,does not)
support the asynGPIB interface.

asyn - asyn Record

Device Address Control Fields 3

TMOT R/W "Timeout (sec)" DBF_DOUBLE

The timeout value for read and write operations
in seconds. If a response is not received from the
device within this time then the record sets a
major alarm. -1.0 means wait forever, no
timeout. Default=1.0

The TMOD field controls what type of I/O is performed when the record processes.

"Write/Read"
(default)

The output data is sent from the selected output field to the device. A response is then read back
into the selected input field. The response must be received within the time specified by TMOT.
For asynOctet the input buffer is flushed before the write operation, so that any characters
received prior to the write operation are discarded. The Write/Read operation is "atomic",
meaning that it is guaranteed that no other asyn I/O to the device will occur between the write
and read operations.

"Write" The output source is sent to the device. No response is read back.
"Read" Data is read from the device into the input field. The response must be received within the time

specified by TMOT. No output is sent to the device prior to the read operation.
"Flush" The input buffer is flushed. Nothing is sent to the device or read from the device. Applies only to

asynOctet.
"NoI/O" The record processes but no I/O is actually performed. This mode can be used as a safety feature

when using an asyn record to just control the trace fields of asyn ports. If the record is in this
mode and is accidentally processed, then no I/O will occur.

Output Control Fields for asynOctet

These fields control output I/O when using the asynOctet interface (i.e. when IFACE="asynOctet").

Name Access Prompt Data type Description

AOUT R/W* "Output
string"

DBF_STRING The output string which is sent to the device if
OFMT="ASCII". The number of bytes sent to the
device will be strlen(AOUT) plus strlen(OEOS).

BOUT R/W* "Output byte
data"

DBF_CHAR
(array)

The output data which is sent to the device if
OFMT="Binary" or "Hybrid". The maximum length of
this field is controlled by OMAX. The actual number of
bytes to be sent to the device when OFMT="Hybrid"
will be strlen(BOUT) plus strlen(OEOS). The actual
number of bytes to be sent to the device when
OFMP="Binary" will be NOWT.

OEOS R/W "Output
terminator"

DBF_STRING A character string that is appended to the output before
transmission to the device. This field is ignored if
OFMT="Binary". Set this field to "" to suppress
transmission of a terminator. Commonly used values
are "\r" (the default), "\n", and "\r\n".

OMAX R "Max. size of
output array"

DBF_LONG The allocated length of the BOUT array. This value
cannot be changed after IOC initialization. Default=80.

asyn - asyn Record

4 Input/Output Control Fields

NOWT R/W "Number of
bytes to write" DBF_LONG

The number of bytes to send from the BOUT array to
the device if OFMT="Binary". This value must be less
than or equal to OMAX. Default=80.

NAWT R/W "Number of
bytes actually
written"

DBF_LONG The actual number of bytes written in the last write
operation. This field is valid for all OFMT modes. This
number does not include the output terminator, if any.

OFMT R/W "Output
format"

DBF_MENU The output format. The choices are:
"ASCII
"(default)

The data sent to the device will be
taken from the AOUT field.

"Hybrid" The data sent to the device will be
taken from the BOUT field.

"Binary" The data sent to the device will be
taken from the BOUT field.

There are two output fields, AOUT (ASCII Output) and BOUT (Byte Output). The OFMT (Output Format) field
is used to select one of these fields or the other as the output source to the device.

If OFMT="ASCII" then the AOUT field is processed with dbTranslateEscape() to convert control characters (e.g.
"\r", "\021") to bytes, the length of the output is determined with strlen(), and the string is sent to the device using
asynOctet->write. This will append the output EOS if one has been set.

If OFMT="Hybrid" then the BOUT field is processed with dbTranslateEscape() to convert control characters (e.g.
"\r", "\021") to bytes, the length of the output is determined with strlen(), and the string is sent to the device using
asynOctet->write. This will append the output EOS if one has been set.

If OFMT="Binary" then NOWT bytes from the BOUT field are sent to the device using asynOctet->write. This
will not append an output EOS.

OEOS is set to the current value for the port when the record connects to the port. If OEOS is modified after the
record connects to the port, then the output EOS will be changed using asynOctet->setOutputEos. IMPORTANT:
The value of OEOS in the database file is never used, because it is modified when the record connects to the port.

Input Control Fields for asynOctet

These fields control input I/O when using the asynOctet interface (i.e. when IFACE="asynOctet").

Name Access Prompt Data type Description

AINP R "Input string" DBF_STRING The input string that is read from
the device if IFMT="ASCII". The
string will be null terminated. Note
that due to the maximum size of a
string in EPICS, the input string
must be less than 40 characters. If
longer strings are required then set
IFMT="Hybrid" and read into the
BINP field.

asyn - asyn Record

Output Control Fields for asynOctet 5

BINP R "Input byte data" DBF_CHAR (array) The input data that is read from the
device if IFMT="Hybrid" or
IFMT="Binary". The maximum
length of this field is controlled by
IMAX. The actual number of bytes
read from the device is given by
NORD.

IEOS R/W "Input terminator" DBF_STRING A string that indicates the end of a
message on input. Set this field to
""" if no input terminator should be
used. This field is ignored if
IFMT="Binary". Commonly used
values are "\r" (the default), "\n",
and "\r\n". The input terminator is
removed from the input buffer after
the read.

IMAX R "Max. size of input
array"

DBF_LONG The allocated length of the BINP
array. This value cannot be
changed after IOC initialization.
Default=80.

NRRD R/W "Number of bytes
to read"

DBF_LONG The requested number of bytes to
read. This field is valid for all
IFMT modes. If this field is <= 0,
then the requested number of bytes
to read will be the EPICS defined
MAX_STRING_SIZE=40 (if
IFMT="ASCII") or IMAX (if
IFMT="Hybrid" or "Binary").
Default=0.

NORD R "Number of bytes
read"

DBF_LONG The actual number of bytes read in
the last read operation. This field is
valid for all IFMT modes. This
number includes the input
terminator, if any.

IFMT R/W "Input format" DBF_MENU The input format. The choices are:
"ASCII"
(default)

The data read from
the device will be
placed in the AINP
field.

"Hybrid" The data read from
the device will be
placed in the BINP
field.

"Binary" The data read from
the device will be
placed in the BINP

asyn - asyn Record

6 Input Control Fields for asynOctet

field.

TINP R "Translated input" DBF_CHAR (array)

This field will contain up to the
first 40 characters of the AINP or
BINP fields (depending on IFMT),
after translation with
epicsStrSnPrintEscaped, to convert
non-printable characters to a
printable form (e.g. \r, \n, etc.)

There are two input fields, AINP (ASCII Input) and BINP (Byte Input). The IFMT (Input Format) field is used to
select one or the other as the destination of data sent from the device.

A read operation terminates when any 1 of the following 4 conditions is met:

The input terminator (IEOS) is found (if IFMT="ASCII" or "Hybrid")1.
EOI asserted (GPIB only)2.
The desired number of input characters (NRRD) are received3.
The timeout (TMOT) expires4.

If IFMT="ASCII" then input is read into the AINP field with asynOctet->read. This will remove the input EOS
string, if any, and AINP will be NULL terminated if possible.

If IFMT="Hybrid" then the input is read into the BINP field with asynOctet->read. This will remove the input
EOS string, if any, and BINP will be NULL terminated if possible.

If IFMT="Binary" then the input is read into the BINP field using asynOctet->read. This will ignore the input
EOS. BINP will be null terminated.

The TINP field is intended for operator display. It will contain up to the first 40 characters of the input read into
AINP (if IFMT="ASCII") or BINP (if IFMT="Hybrid" or "Binary"). Non-printable characters are first converted
to a printable form using epicsStrSnPrintEscaped. This field should not normally be using for parsing the response
from the device. This is the field that is shown as the ASCII input field in the medm display asynRecord.adl. It is
useful for displaying the device response, even in "Hybrid" and "Binary" input modes.

The IEOS terminator field is 40 characters long. However, the serial drivers permit 2 character end-of-message
strings at most. The GPIB drivers only permit 1 character end-of-message strings.

IEOS is set to the current value for the port when the record connects to the port. If IEOS is modified after the
record connects to the port, then the input EOS will be changed using asynOctet->setInputEos. IMPORTANT:
The value of IEOS in the database file is never used, because it is modified when the record connects to the port.

Input/Output Control Fields for Register Interfaces

These fields control I/O when using the register interfaces (i.e. when IFACE="asynInt32", "asynUInt32Digital",
or "asynFloat64").

Name Access Prompt Data type Description

I32INP R "asynInt32 input" DBF_LONG

asyn - asyn Record

 Input/Output Control Fields for Register Interfaces 7

The input data that is read from the device if
IFACE="asynInt32" and TMOD="Read" or
"Write/Read".

I32OUT R/W* "asynInt32 output" DBF_LONG The data that is sent to the device if
IFACE="asynInt32" and TMOD="Write" or
"Write/Read".

UI32INP R "asynUInt32Digital
input"

DBF_ULONG The input data that is read from the device if
IFACE="asynUInt32Digital" and
TMOD="Read" or "Write/Read".

UI32OUT R/W* "asynUInt32Digital
output"

DBF_ULONG The data that is sent to the device if
IFACE="asynUInt32Digital" and
TMOD="Write" or "Write/Read".

UI32MASK R/W "asynUInt32Digital
mask"

DBF_ULONG The mask that is used if
IFACE="asynUInt32Digital". The mask is
used for both write and read operations.
Only bits that are set in mask will be
modified on writes, and any bits that are
clear in mask will be zero on read.

F64INP R "asynFloat64 input" DBF_DOUBLE The input data that is read from the device if
IFACE="asynFloat64" and TMOD="Read"
or "Write/Read".

F64OUT R/W* "asynFloat64
output"

DBF_DOUBLE The data that is sent to the device if
IFACE="asynFloat64" and TMOD="Write"
or "Write/Read".

Serial Control Fields

Name Access Prompt Data type Description

BAUD R/W "Baud rate" DBF_MENU

The baud rate for the port. Choices are "Unknown",
"300", "600", "1200", "2400", "4800", "9600", "19200",
"38400", "57600", "115200", "230400", 460800,
576000, 921600, and 1152000. Default="Unknown".
Note that BAUD field is limited to 16 choices because it
is of type DBF_MENU. The LBAUD field can be used
to select baud rates that are not available in the BAUD
menu.

LBAUD R/W "Baud rate
(long)" DBF_LONG

The baud rate for the port as an integer. This field allows
selecting any baud rate, including those not available in
the BAUD menu field. Changing the BAUD field will
change the LBAUD field accordingly. Changing the
LBAUD field will change the BAUD field to the
appropriate menu choice if possible, or to "Unknown" if
that baud rate is not in the menu.

asyn - asyn Record

8 Serial Control Fields

PRTY R/W "Parity" DBF_MENU The device parity. Choices are "Unknown", "None",
"Even", and "Odd". Default="Unknown".

DBIT R/W "Data bits" DBF_MENU The number of data bits. Choices are "Unknown", "5",
"6", "7", and "8". Default="Unknown".

SBIT R/W "Stop bits" DBF_MENU The number of stop bits. Choices are "Unknown", "1"
and "2". Default="Unknown".

MCTL R/W "Modem
Control"

DBF_MENU Modem control. Choices are "Unknown", "CLOCAL"
and "YES". Default="Unknown".

FCTL R/W "Flow control
(cts rts)"

DBF_MENU Flow control. Choices are "Unknown", "None" and
"Hardware". Default="Unknown". Hardware means to
use the cts (clear to send) and rts (request to send)
signals

IXON R/W "Output
XOFF/XON"

DBF_MENU XOFF/XON control on output. Choices are "Unknown",
"No" and "Yes". Default="Unknown". If the IOC
receives an XOFF character, it suspends output until an
XON character is received.

IXOFF R/W "Input
XOFF/XON"

DBF_MENU XOFF/XON control on input. Choices are "Unknown",
"No" and "Yes". Default="Unknown". The IOC sends
XOFF and XON characters as necessary to prevent input
from coming in faster than programs are reading it. The
external device sending the input data must respond to
an XOFF character by suspending transmission, and to
an XON character by resuming transmission.

IXANY R/W "XON=any
character"

DBF_MENU Choices are "Unknown", "No" and "Yes".
Default="Unknown". Allows any input character to
restart output when output has been suspended with the
XOFF character. Otherwise, only the XON character
restarts output. This flag is not available on all systems,
including WIN32.

The above fields are used to set the serial port parameters. A write to any of these fields causes the port
parameters to be changed immediately, but does not cause any I/O to be performed. The port parameters can
currently be set only for local serial ports, including IP-Octal on vxWorks. They cannot currently be set for
Ethernet/serial adapters like the Moxa units.

The "Unknown" choice for each option is used on readback if the driver does not support that option. "Unknown"
should not be written into the field.

The baud rates actually available are device dependent. For the SBS IP-Octal module the maximum baud rate is
38400.

These record fields are set to the values currently in effect for the port when the connection to the port is made.
IMPORTANT: The value of these fields in the database file is never used, because it is modified when the record
connects to the port.

asyn - asyn Record

 Serial Control Fields 9

vxWorks and MCTL,FCTL. The sioLib serial support for vxWorks uses CLOCAL for what POSIX calls
CTSRTS (Clear to send and request to send). It does not appear that sioLib has any concept of modem control,
which is what POSIX calls CLOCAL. For vxWorks the standard serial support for asynDriver supplied in
drvAsynSerialPort.c, accepts both MCTL and FCTL. MCTL=(CLOCAL,YES) is the same as
FCTL=(None,Hardware).

IP Control Fields

Name Access Prompt Data type Description

DRTO R/W "Disconnect on
Read Timeout"

DBF_MENU Choices are "Unknown", "No" and "Yes".
Default="No". If Yes then the IP port will be
disconnected on a read timeout.

HOSTINFO R/W "IP port
hostInfo"

DBF_STRING The IP port hostInfo string with the same syntax
as the drvAsynIPPortConfigure command i.e.
host:port[:localport] [protocol].

Writing to the HOSTINFO field will cause the drvAsynIPPort driver to disconnect from the current host (if any)
and then attempt to connect to the new host.

If the drvAsynIPPort was created with the COM (RFC 2217) protocol then the serial control fields listed above
can be used to control those settings on ther Ethernet/serial adapter.

GPIB Control Fields

Name Access Prompt Data type Description

SPR R "Serial Poll
Response"

DBF_UCHAR The device status byte, which is read during a
Serial Poll operation.

UCMD R/W* "Universal
command"

DBF_MENU A GPIB Universal Command to be executed. . The
choices are:
"None"
"Device Clear (DCL)"
"Local Lockout (LL0)"
"Serial Poll Disable (SPD)"
"Serial Poll Enable (SPE)"
"Unlisten (UNL)"
"Untalk (UNT)"

ACMD R/W* "Addressed
command"

DBF_MENU A GPIB Addressed Command to be executed. The
choices are:
"None"
"Group Execute Trig. (GET)"
"Go To Local (GTL)"
"Selected Dev. Clear (SDC)"
"Take Control (TCT)"

asyn - asyn Record

10 IP Control Fields

"Serial Poll"

GPIB Universal Commands are commands which are directed to all devices on the GPIB bus, not just addressed
devices. If the UCMD field is set to any value except "None" then the appropriate Universal Command is
executed, and UCMD is set back to "None". The record processing only performs the Universal Command, i.e. it
does not also perform the GPIB operation indicated by TMOD.

GPIB Addressed Commands are commands which are directed to only the addressed devices on the GPIB bus. If
the ACMD field is set to any value except "None" then the appropriate Addressed Command is executed, and
ACMD is set back to "None". The record processing only performs the Addressed Command, i.e. it does not also
perform the GPIB operation indicated by TMOD.

Trace Control Fields

Name Access Prompt Data type Description

TMSK R/W "Trace
mask" DBF_LONG The asynTraceMask.

TB0 R/W "Trace error" DBF_MENU The ASYN_TRACE_ERROR bit. Choices are "Off" and
"On".

TB1 R/W "Trace IO
device" DBF_MENU The ASYN_TRACEIO_DEVICE bit. Choices are "Off"

and "On".

TB2 R/W "Trace IO
filter" DBF_MENU The ASYN_TRACEIO_FILTER bit. Choices are "Off"

and "On".

TB3 R/W "Trace IO
driver" DBF_MENU The ASYN_TRACEIO_DRIVER bit. Choices are "Off"

and "On".

TB4 R/W "Trace flow" DBF_MENU The ASYN_TRACE_FLOW bit. Choices are "Off" and
"On".

TB5 R/W "Trace
warning" DBF_MENU The ASYN_TRACE_WARNING bit. Choices are "Off"

and "On".

TIOM R/W "Trace I/O
mask" DBF_LONG The asynTraceIOMask.

TIB0 R/W "Trace IO
ASCII" DBF_MENU The ASYN_TRACEIO_ASCII bit. Choices are "Off" and

"On".

TIB1 R/W "Trace IO
escape" DBF_MENU The ASYN_TRACEIO_ESCAPE bit. Choices are "Off"

and "On".

TIB2 R/W "Trace IO
hex" DBF_MENU The ASYN_TRACEIO_HEX bit. Choices are "Off" and

"On".

TINM R/W "Trace Info
mask" DBF_LONG The asynTraceInfoMask.

TINB0 R/W "Trace Info
Time" DBF_MENU The ASYN_TRACEINFO_TIME bit. Choices are "Off"

and "On".

asyn - asyn Record

GPIB Control Fields 11

TINB1 R/W "Trace Info
Port" DBF_MENU The ASYN_TRACEINFO_PORT bit. Choices are "Off"

and "On".

TINB2 R/W "Trace Info
Source" DBF_MENU The ASYN_TRACEINFO_SOURCE bit. Choices are

"Off" and "On".

TINB3 R/W "Trace Info
Thread" DBF_MENU The ASYN_TRACEINFO_THREAD bit. Choices are

"Off" and "On".

TSIZ R/W
"TraceIO
truncate
size"

DBF_LONG
The parameter passed to
asynTraceSetTraceIOTruncateSize(). This value is used to
limit the number of I/O bytes printed by traceIO.

TFIL R/W "Trace IO
file" DBF_STRING The name of the file to which trace information is printed.

The above fields are used to control the asynTrace facility. They allow one to turn on and off debugging output
printed at the shell or written to the trace file.

The TMSK field allows one to read/write the entire asynTraceMask word. The TB0-TB5 fields allow one to
read/write the individual bits in asynTraceMask. The TIOM field allows one to read/write the entire
asynTraceIOMask word, and the TIB0-TIB2 fields allow one to read/write the individual bits in
asynTraceIOMask. The TINM field allows one to read/write the entire asynTraceInfoMask word, and the
TINB0-TINB3 fields allow one to read/write the individual bits in asynTraceInfoMask.

When the asyn record is connected to a new device with the PORT and ADDR fields the above trace fields are
automatically updated to reflect the current asynTrace, asynTraceIO, and asynTraceInfo masks for that device.

The TFIL field is used to set the name of the trace file. It is not possible for the asyn record to determine the
current file name if the record did not set it. In this case the file name is displayed as "Unknown". Set this field to
a string file name (including possibly a valid path from the IOC's current default directory) to have the output
written to that file. The following values are handled as special cases:

<stdout> - Write to standard out.•
<stderr> - Write to standard error.•
<errlog> - Use the errlog facility.•

Connection Management Fields

Name Access Prompt Data type Description

AUCT R/W "Autoconnect" DBF_MENU Sets the autoconnect option. Choices are
"noAutoConnect" and "autoConnect". The value
read reflects current state of the autoconnect flag,
i.e. the value returned from isAutoConnect().

ENBL R/W "Disable/Enable" DBF_MENU

Disables or enables the port. Choices are "Disable"
and "Enable". The value read reflects current state
of the enabled flag, i.e. the value returned from
isEnabled().

CNCT R/W "Connect/Disconnect" DBF_MENU

asyn - asyn Record

12 Trace Control Fields

Disconnects or connects the device. Choices are
"Disconnect" and "Connect". The value read
reflects current state of the connected flag, i.e. the
value returned from isConnected().

Error Status Fields

Name Access Prompt Data type Description

ERRS R "Error status" DBF_STRING Error status string for the most recent operation. This
string is set to "" (null string) at the start of each
connection and I/O operation.

AQR W "About
queueRequest"

DBF_CHAR Abort queueRequest. If a process request has been
queued but not delivered it is canceled, the record is
put into alarm and record completion occurs.

The ERRS field is set to "" (null string) at the start of every operation, including trace and connection
management operations. It contains the first 100 characters of any error message the record writes with
asynPrint(...ASYN_TRACE_ERROR...).

The standard EPICS record fields STAT (status) and SEVR (severity) are used to report the I/O error status. For
example status field may be set to NO_ALARM, WRITE, READ, or COMM, and the SEVR field may be set to
NO_ALARM, MINOR, or MAJOR. These alarm fields are only used to report I/O errors or errors when
connecting to a new PORT or ADDR. They are not affected by trace or connection management operations.

Private Fields

Name Access Prompt Data type Description

IPTR N "Input buffer pointer" DBF_NOACCESS The pointer to the buffer for the
BINP field.

OPTR N "Output buffer pointer" DBF_NOACCESS The pointer to the buffer for the
BOUT field.

Record Processing

The asyn record processes, i.e. performs the I/O operation given by TMOD, according to the normal rules for
EPICS records. The AOUT, BOUT, I32OUT, UI32OUT, and F64OUT fields are Process Passive, so the record
will process if these fields are written to and the SCAN field of the record is Passive. The scan field of the record
can be set to any of the periodic scan rates (e.g. "1 second") for periodic processing, to "Event" for event
processing, or to "I/O Intr" for I/O interrupt processing.

"I/O Intr" scanning is fully supported for drivers that provide callbacks.

If the SCAN field is "I/O Intr" it will be changed to "Passive" when any of the following fields are modified:
PORT, ADDR, DRVINFO, REASON, IFACE, or UINT32MASK. This is necessary because changes to these
fields require re-registering with the interrupt source.

asyn - asyn Record

Connection Management Fields 13

Obsolete serial and GPIB records

The asyn record is designed to be a complete replacement for the older generic serial ("serial") and generic GPIB
("gpib") records. These records are no longer needed, and will not be supported in the future. The following is a
list of the differences between the old serial and GPIB records and the new asyn record which may require
changes to databases or applications.

The ODEL field has been replaced by OEOS. It has changed from a DBF_LONG to DBF_STRING in
order to support multi-character terminators.

•

The IDEL (serial) and EOS (gpib) fields have been replaced by IEOS. They have changed from a
DBF_LONG to DBF_STRING in order to support multi-character terminators.

•

The INP field has been replaced by the PORT and ADDR fields in order to support run-time connection
to different devices.

•

The AOUT and OEOS fields are processed by dbTranslateEscape before being sent to the device. In rare
cases this may require changing the output strings if these contained the "\" character.

•

The asyn record always posts monitors on the input field (AINP or BINP) when the record processes. The
older records did not post monitors on the AINP field if the value was the same as the previous read. This
caused problems for some SNL programs and data acquisition applications.

•

The ODEL and IDEL fields were used even when OFMT or IFMT were in "Binary" mode. OEOS and
IEOS are now ignored when OFMT or IFMT respectively are in "Binary" mode.

•

The ODEL and IDEL fields were always used to set the input and output end of string. The IEOS and
OEOS fields now are now initialized to the current EOS settings for the port when the record connects.
IEOS and OEOS only change the EOS settings if these fields are modified after the record connects to the
port. Thus, it is now important to initialize the EOS strings for the port correctly in the startup script.

•

The TMOT field has changed from DBF_LONG to DBF_DOUBLE, and the units have changed from
milliseconds to seconds. TMOT=-1.0 now means wait forever.

•

medm screens

The following are screen shots of the medm screens provided for the asyn record.

Main control screen, asynRecord.adl

asyn - asyn Record

14 Record Processing

asynOctet I/O screen, asynOctet.adl

asyn - asyn Record

Main control screen, asynRecord.adl 15

asyn register device I/O screen, asynRegister.adl

Serial port setup screen, asynSerialPortSetup.adl

asyn - asyn Record

16 asynOctet I/O screen, asynOctet.adl

IP port setup screen, asynIPPortSetup.adl

GPIB setup screen, asynGPIBSetup.adl

asyn - asyn Record

Serial port setup screen, asynSerialPortSetup.adl 17

Example #1

The following is an IDL program that demonstrates the use of the asyn record. It transfers data in both ASCII and
binary formats. Hopefully the IDL syntax is clear enough to be understood by non-IDL users, and can be
translated into your favorite scripting language.

; This IDL program demonstrates the use of the EPICS asyn record.
; The program uses 2 asyn records. The ports corresponding to these
; 2 records are connected with a null-modem cable
; Record 1 sends a message to record 2 in ASCII.
; Record 2 sends a message back to record 1 in binary.

; Record names
rec1 = '13LAB:serial2'
rec2 = '13LAB:serial3'
recs = [rec1, rec2] ; Array with both record names
; Set up port parameters for both records:
; 19,200 baud, 8 data bits, 1 stop bit, no parity, no flow control
; Timeout=1 second
for i=0, 1 do begin
 rec = recs[i]
 t = caput(rec+'.BAUD', '19200')
 t = caput(rec+'.DBIT', '8')
 t = caput(rec+'.SBIT', '1')
 t = caput(rec+'.PRTY', 'None')
 t = caput(rec+'.FCTL', 'None')
 t = caput(rec+'.TMOT', 1.0)
endfor

; Put record 1 in ASCII output mode, <CR> output delimiter,
; binary input mode, no input delimiter
t = caput(rec1+'.OFMT', 'ASCII')
t = caput(rec1+'.OEOS', '\r')
t = caput(rec1+'.IFMT', 'Binary')
t = caput(rec1+'.IEOS', '')
; Put a monitor on record 1 Binary input field
t = casetmonitor(rec1+'.BINP')
; Clear the monitor by reading the value
t = caget(rec1+'.BINP', junk)

; Put record 2 in Binary output mode, no output delimiter
; ASCII input mode, <CR> input delimiter
t = caput(rec2+'.OFMT', 'Binary')
t = caput(rec2+'.OEOS', '')

asyn - asyn Record

18 GPIB setup screen, asynGPIBSetup.adl

t = caput(rec2+'.IFMT', 'ASCII')
t = caput(rec2+'.IEOS', '\r')

; Put record 2 in read transfer mode
t = caput(rec2+'.TMOD', 'Read')
; Put a monitor on record2 ASCII input field
t = casetmonitor(rec2+'.AINP')
; Clear the monitor by reading the value
t = caget(rec2+'.AINP', junk)

; Process record 2; this will cause it to wait for data
t = caput(rec2+'.PROC', 1)
; Put record 1 in Write transfer mode
t = caput(rec1+'.TMOD', 'Write')
; Send a message to port 2
message = 'Request data: '+string(systime())
print, 'Record 1 sent message: ' + message
t = caput(rec1+'.AOUT', message)

; Wait for monitor on record2 ASCII input field
while (not cacheckmonitor(rec2+'.AINP')) do wait, .1
; Read data from record 2
t = caget(rec2+'.AINP', input)
print, 'Got a message from record 1: ', input

size=256
; Put record 1 in read mode, expect "size" byte input
t = caput(rec1+'.TMOD', 'Read')
t = caput(rec1+'.NRRD', size)
; Process record 1; this will cause it to wait for data
t = caput(rec1+'.PROC', '1')

; Put record 2 in write mode
t = caput(rec2+'.TMOD', 'Write')
; Send an 8 bit binary sin wave, "size" points long from
; port 2 to port 1
send_data = byte(sin(findgen(size)/5)*126 + 127)
t = caput(rec2+'.NOWT', size)
t = caput(rec2+'.BOUT', send_data)

; Wait for monitor on channel 1 binary input
while (not cacheckmonitor(rec1+'.BINP')) do wait, .1

; Record 1 should have received "size" bytes. Make sure NORD=size
t = caget(rec1+'.NORD', nord)
if (nord eq size) then $
 print, 'Read array data OK' $
else $
 print, 'Error reading array data!'

; Read data from record 1
t = caget(rec1+'.BINP', rec_data, max=nord)

; Plot it
plot, rec_data

end

asyn - asyn Record

Example #1 19

Example #2

The following is an IDL procedure that demonstrates the use of the asyn record to communicate with a Tektronix
TDS200 Digital Oscilloscope. It transfers data in both ASCII and binary formats. It will work with either an
RS-232 or GPIB connection to the scope. The record must be loaded with IMAX at least large enough to read the
waveform. The entire waveform readout is 2500 channels on the TDS220. The buffer size required is 1 byte per
channel + 7 bytes header/checksum. The start and stop parameters to the procedure can be used to read a subset of
the waveform.

Hopefully the IDL syntax is clear enough to be understood by non-IDL users, and can be translated into your
favorite scripting language.

pro read_tds200, record, data, start=start, stop=stop, chan=chan

; This procedure reads waveforms from the Tektronix TDS200 series scopes
; Mark Rivers
; Modifications:
; March 7, 2001 Correctly put record in Write and Write/Read modes.
; Dec. 7, 2001 Set timeout to 2 seconds before read.
; March 30, 2004 Change IFMT from Binary to Hybrid, other fixes.

if (n_elements(start) eq 0) then start=1
if (n_elements(stop) eq 0) then stop=2500
if (n_elements(chan) eq 0) then chan=1
chan = 'CH'+strtrim(chan,2)

aout = record + '.AOUT'
binp = record + '.BINP'
tmod = record + '.TMOD'
ifmt = record + '.IFMT'
binp = record + '.BINP'
nord = record + '.NORD'
tmot = record + '.TMOT'
oeos = record + '.OEOS'
ieos = record + '.IEOS'

; Set the terminators to newline (assumes scope is set up this way)
t = caput(oeos, '\n', /wait)
t = caput(ieos, '\n', /wait)

; Set the transfer mode to write
t = caput(tmod, 'Write', /wait)

; Set the encoding to positive binary, start and stop readout channels
; Set the readout range. Can't do as one command, exceed 40 characters
command = 'DATA:ENC RPB; DATA:START ' + strtrim(start,2)
t = caput(aout, command, /wait)
command = 'DATA:STOP ' + strtrim(stop,2)
t = caput(aout, command, /wait)

;Set DATa:WIDth to 2
;command = 'DATA:WIDTH 2'
;t = caput(aout, command, /wait)

;Set channel number
command = 'DATA:SOURCE '+ strtrim(chan,2)
t = caput(aout, command, /wait)

; Set the input mode to hybrid. Large buffer but line-feed terminator

asyn - asyn Record

20 Example #2

t = caput(ifmt, 'Hybrid', /wait)

; Set the transfer mode to write/read
t = caput(tmod, 'Write/Read', /wait)

; Empirically the timeout needs to be about 5 seconds for
; 1024 channels with RS-232
t = caput(tmot, 5.0)

; Read the scope
t = caput(aout, 'Curve?', /wait)

; Get the data
t = caget(binp, data)

; Check the number of bytes read. See if it's what's expected
n_data = stop-start+1
n_header = 2 + strlen(strtrim(n_data, 2))
n_checksum = 1
n_expected = n_header + n_data + n_checksum
t = caget(nord, n)
if (n ne n_expected) then $
 print, 'Scope returned:', n, $' bytes, expected: ', n_expected

; The first n_header bytes are header, the last byte is checksum.
; Data are offset by 127, convert to long
data = data[n_header:n-2] - 127L

return
end

asyn - asyn Record

 Example #2 21

asyn - asyn Record

22 Example #2

	Table of Contents
	 asyn Record
	 Contents
	 Overview
	 Device Address Control Fields
	 Input/Output Control Fields
	 Output Control Fields for asynOctet
	 Input Control Fields for asynOctet
	 Input/Output Control Fields for Register Interfaces
	 Serial Control Fields
	 IP Control Fields
	 GPIB Control Fields
	 Trace Control Fields
	 Connection Management Fields
	 Error Status Fields
	 Private Fields
	 Record Processing
	 Obsolete serial and GPIB records
	 medm screens
	 Main control screen, asynRecord.adl
	 asynOctet I/O screen, asynOctet.adl
	 asyn register device I/O screen, asynRegister.adl
	 Serial port setup screen, asynSerialPortSetup.adl
	 IP port setup screen, asynIPPortSetup.adl
	 GPIB setup screen, asynGPIBSetup.adl

	 Example #1
	 Example #2

